Skip to main content

Diabetes and Atherosclerosis

  • Chapter
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Macrovascular disease is the leading cause of mortality and morbidity in diabetes. The study of factors that may uniquely contribute to the accelerated development of atherosclerosis in diabetes has been an ongoing process for several years. However, the concepts behind both the pathogenic mechanisms of atherosclerosis and the trigger mechanisms that lead to acute clinical events have drastically changed in the last two decades. It is now fully accepted that arteriosclerosis is a chronic inflammatory process and not a degenerative process that inevitably progresses with age. Also accepted is the fact that plaque rupture or erosion not the degree of vessel obstruction is responsible for the majority of acute cardiovascular events. Diabetes most likely contributes to and enhances the chronic inflammatory process characteristic of arteriosclerosis and supporting this concept are the studies showing that atherectomy specimens from diabetic patients undergoing coronary atherectomy for symptomatic coronary artery disease (CAD) have a larger content of macrophages than specimens from patients without diabetes (1). In recent years, mechanisms that lead to plaque formation and to plaque erosion or rupture and the key event that precedes both, endothelial dysfunction, are being actively studied (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moreno PR, Murcia AM, Palacios IM, et al. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation 2000;102:2180–2184.

    PubMed  CAS  Google Scholar 

  2. Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in cholesterol-fed rabbits, II: selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 1989:9:908–918.

    PubMed  CAS  Google Scholar 

  3. Frank FS, Fogelman AM. Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultra-rapid freezing and freeze-etching. J Lipid Res 1989;30:967–978.

    PubMed  CAS  Google Scholar 

  4. Nievelstein PFEM, Fogelman AM, Frank FS, Mottino G. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of LDL: a deep-etch and immunolocalization study of rapidly frozen tissue. Arterioscler Thromb 1991;11:1795–1805.

    PubMed  CAS  Google Scholar 

  5. Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW. Monocyte transmigration induced by modification of low density lipoprotein in co-cultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest 1991;88:2039–2046.

    PubMed  CAS  Google Scholar 

  6. Rajavashisth TB, Andalibi A, Territo MD, et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low density lipoproteins. Nature 1990;344:254–257.

    PubMed  CAS  Google Scholar 

  7. Schwartz D, Andalibi A, Chaverri-Almada L, et al. The role of the gro family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. J Clin Invest 1994;94:1968–1973.

    PubMed  CAS  Google Scholar 

  8. Hessler JR, Robertson Jr AL, Chisolm GM. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis 1979;32:213–218.

    PubMed  CAS  Google Scholar 

  9. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of LDL leads to cholesterol ester accumulation in human monocytes/macrophages. Proc Natl Acad Sci USA 1980;77:2214–2218.

    PubMed  CAS  Google Scholar 

  10. Virella G, Lopes-Virella MF. Lipoprotein autoantibodies: measurement and significance. Clin Diag Lab Immunol 2003;10:499–505.

    CAS  Google Scholar 

  11. Virella G, Atchley D, Koskinen S, Zheng D, Lopes-Virella MF, DCCT/EDIC Research Group. Pro-atherogenic and pro-inflammatory properties of immune complexes prepared with purified human oxLDL antibodies and human oxLDL. Clin Immunol 2002;105:81–92.

    PubMed  CAS  Google Scholar 

  12. Moncada S, Palmer R, Higgs E. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109–142.

    PubMed  CAS  Google Scholar 

  13. Hogman M, Frostell C, Arnberg H, Hedenstierna G. Bleeding time prolongation and NO inhalation. Lancet 1993;341:1664–1665.

    PubMed  CAS  Google Scholar 

  14. Kawabata A. Evidence that endogenous nitric oxide modulates plasma fibrinogen levels in rat. Br J Pharmacol. 1996;117:236–237.

    PubMed  CAS  Google Scholar 

  15. Huszka M, Kaplar M, Rejto L, et al. The association of reduced endothelium derived relaxing factor-NO production with endothelial damage and increased in vivo platelet activation in patients with diabetes mellitus. Thrombos Res 1997;86:173–180.

    CAS  Google Scholar 

  16. Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest 1996;97:979–987.

    PubMed  CAS  Google Scholar 

  17. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993;88:2510–2516.

    PubMed  CAS  Google Scholar 

  18. McVeigh GE, Brennan GM, Johnston GD, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1992;35:771–776.

    PubMed  CAS  Google Scholar 

  19. Gunnett CA, Heistad DD, Faraci FM. Gene-targeted mice reveal a critical role for inducible nitric oxide synthase in vascular dysfunction during diabetes. Stroke 2003;34:2970–2974.

    PubMed  CAS  Google Scholar 

  20. Chin JH, Azhar S, Hoffman BB. Inactivation of endothelial-derived relaxing factor by oxidized lipoproteins. J Clin Invest 1992;89:10–18.

    PubMed  CAS  Google Scholar 

  21. Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein displaces endothelial nitric oxide synthase from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 1999;274:32,512–32,519.

    PubMed  CAS  Google Scholar 

  22. Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene disrupted mice. Science 2001;293:2449–2452.

    PubMed  CAS  Google Scholar 

  23. Jessup W, Dean RT. Autoinhibitor of murine macrophage mediated oscidation of LDL by nitric oxide synthesis. Atherosclerosis 1993;101:145–155.

    PubMed  CAS  Google Scholar 

  24. Ischiropoulos H, al Mehdi A. Peroxynitrate-mediated oxidative protein modifications. FEBS Lett 1995;364:279–282.

    PubMed  CAS  Google Scholar 

  25. Bhatia S, Shukla R, Venkata MS, Gambhir J, Madhava PK. Antioxidant status, lipid peroxidation and nitric oxide end prodicts in patients with type 2 diabetes mellitus with nephropathy. Clin Biochem 2003;36:557–562.

    PubMed  CAS  Google Scholar 

  26. Fontbonne AM, Eschwege EM. Insulin and cardiovascular disease. Paris prospective study. Diabetes Care 1991;14:461–469.

    PubMed  CAS  Google Scholar 

  27. Despres JP, Lamarche B, Mauriege P, et al. Hyperinsulinemia as an independent risk factor for ischaemic heart disease. New Engl J Med 1996;334:952–957.

    PubMed  CAS  Google Scholar 

  28. The Diabetes Control and Complications Trial Research Group. New Engl J Med 1993;329:997–1017.

    Google Scholar 

  29. UK Prospective Diabetes Study Group. Lancet 1998;353:854–865.

    Google Scholar 

  30. Scherrer U, Randin D, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 1994;94:2511–2515.

    PubMed  CAS  Google Scholar 

  31. Baron AD. Insulin and the Vasculature—Old Actors, New Roles. Journal of Investigative Medicine 1996;44:406–412.

    PubMed  CAS  Google Scholar 

  32. Moncada S. Biological importance of prostacyclin, Br J Pharmac 1982;76:3–31.

    CAS  Google Scholar 

  33. Colwell JA, Lopes-Virella MF, Winocour PD, Halushka PV. New concepts about the pathogenesis of atherosclerosis in diabetes mellitus. In: Levin ME, O’Neal LW, (eds). The diabetic foot, 4th ed, Mosby-Year Book, St. Louis, MO, 1988, pp. 51–70.

    Google Scholar 

  34. Sekiguchi N, Umeda F, Masakado M, Ono Y, Hashimoto T, Nawata H. Immunohistochemical study of prostacyclin-stimulating factor (PSF) in the diabetic and atherosclerotic human coronary artery. Diabetes 1997;46:1627–1632.

    PubMed  CAS  Google Scholar 

  35. Umeda F, Masakado M, Takei A. Difference in serum-induced prostacyclin production by cultured aortic and capillary endothelial cells. Prostagl Leukotr Essen Fatty Acids 1997;56:51–55.

    CAS  Google Scholar 

  36. Colwell JA, Jokl R. Clotting disorders in diabetes. In: Porte D, Sherwin R, Rifkin H, (eds). Diabetes mellitus: theory and practice, 5th ed, Appleton and Lange, Norwalk, CT, 1997, pp. 1543–1557.

    Google Scholar 

  37. Colwell JA, Winocour PD, Lopes-Virella MF. Platelet function and platelet interactions in atherosclerosis and diabetes mellitus. In: Rifkin H, Porte D, (eds). Diabetes mellitus: theory and practice. Elsevier, New York, 1989, pp. 249–256.

    Google Scholar 

  38. Uedelhoven WM, Rutzel A, Meese CO, Weber PC. Smoking alters thromboxane metabolism in man. Biochem Biophys Acta 1991;108:197–201.

    Google Scholar 

  39. Davi G, Averna M, Catalano I, et al. Increased thromboxane biosynthesis in type II a) hypercholesterolemia. Circulation 1992;85:1792–1798.

    PubMed  CAS  Google Scholar 

  40. Di Minno G, Davi G, Margaglione M, et al. Abnormally high thromboxane biosynthesis in homozygous homocystinuria: evidence for platelet involvement and probucol-sensitive mechanism. J Clin Invest 1993;92:1400–1406.

    PubMed  Google Scholar 

  41. Davi G, Gresele P, Violi F, Catalano M, et al. Diabetes mellitus, hypercholesterolemia and hypertension, but not vascular disease per se, are associated with persistent platelet activation in vivo: Evidence derived from the study of peripheral arterial disease. Circulation 1997;96:69–75.

    PubMed  CAS  Google Scholar 

  42. Toda N, Bian K, Akiba T, Okamura T. Heterogeneity in mechanisms of bradykinin action in canine isolated blood vessels. Eur J Pharmacol 1987;135:321–329.

    PubMed  CAS  Google Scholar 

  43. Briner VA, Tsai P, Schrier RW. Bradykinin: potential for vascular constriction in the presence of endothelial injury. Am J Physiol Renal Fluid Electrolyte Physiol 1993;264:F322–F327.

    CAS  Google Scholar 

  44. Greene EL, Velarde V, Jaffa AA. Role of reactive oxygen species in bradykinin induced mitogen-activated protein kinase and c-fos induction in vascular cells. Hypertension 2000;35:942–947.

    PubMed  CAS  Google Scholar 

  45. Velarde V, Ullian ME, Mornelli TA, Mayfield RK, Jaffa AA. Mechanisms of MAPK activation by bradykinin in vascular smooth muscle cells. Am J Physiol Cell Physiol 1999;277:C253–C261.

    CAS  Google Scholar 

  46. Douillet CD, Velarde V, Christopher JT, Mayfield RK, Trojanowska ME, Jaffa AA. Mechanisms by which bradykinin promotes fibrosis in vascular smooth muscle cells: role of TGF-β and MAPK. Am J Physiol Heart Circ Physiol 2000;279:H2829–H2837.

    PubMed  CAS  Google Scholar 

  47. Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey TW, Schmaier AH, DCCT/EDIC Study Group. Diabetes 2003;52:1215–1221.

    PubMed  CAS  Google Scholar 

  48. Christopher J, Jaffa AA. Diabetes modulates the expression of glomerular kinin receptors. International Immunopharmacology 2002;2:1771–1779.

    PubMed  CAS  Google Scholar 

  49. Christopher J, Velarde V, Zhang D, Mayfield D, Mayfield R, Jaffa AA. Regulation of B2 kinin receptors by glucose in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2000;280:H1537–H1546.

    Google Scholar 

  50. Lee Y, Kuhn WH, Kaiser S, Hennig B, Daugherty A, Toborek M. Interleukin 4 induces transcription of the 15-lipoxygenase 1 gene in human endothelial cells. J. Lipid Res 2001;42:783–791.

    PubMed  CAS  Google Scholar 

  51. Kim JA, Gu JL, Natarajan R, Berliner JA, Nadler J. A leukocyte type of 12-lipoxygenase is expressed in human vascular and mononuclear cells. Evidence for up-regulation by angiotensin II. Arterioscler Thromb Vas Biol 1995;15:942–948.

    CAS  Google Scholar 

  52. Natarajan R, Gu JL, Rossi J, Gonzales N, Lanting L, Xu L, Nadler J. Elevated glucose and angiotensin II increase 12-lipoxygenase activity and expression in porcine aortic smooth muscle cells. Proc Natl Acad Sci USA 1993;90:4947–4951.

    PubMed  CAS  Google Scholar 

  53. Yla-Herttuala S, Rosenfeld ME, Parthasarathy S, et al. Co-localization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich area of atherosclerotic lesions. Proc Natl Acad Sci USA 1990;87:6959–6963.

    PubMed  CAS  Google Scholar 

  54. Folcick VA, Nivar-Aristy RA, Krajewski LP, Cathcart MC. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest 1995;504–510.

    Google Scholar 

  55. Benz D, Mol JM, Ezaki M, et al. Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblasts expressing high levels of human 15-lipoxygenase. J Biol Chem 1995;270:5191–5197.

    PubMed  CAS  Google Scholar 

  56. Scheidegger K, Butler JS, Witztum JL. Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway. J Biol Chem 1997;272:21,609–21,615.

    PubMed  CAS  Google Scholar 

  57. Patricia MK, Kim JA, Harper CM, et al. Lipoxygenase products incease monocyte adhesion to human aortic endothelial cells. Arterioscler Thromb VASC Biol 1999;19:2615–2622.

    PubMed  CAS  Google Scholar 

  58. Natarajan R, Gonzalez N, Xu L, Nadler JL. Vascular smooth muscle cells exhibit increased growth in response to elevated glucose. Biochem Biophys Res Commun 1992;187:552–560.

    PubMed  CAS  Google Scholar 

  59. Natarajan R, Gonzales N, Lanting L, Nadler JL. Role of the lipoxygenase pathway in angiotensin II-induced vascular smooth muscle cell hypertrophy. Herpertension 1994;23:1142–1147.

    Google Scholar 

  60. Natarajan R, Nadler JL. Lipoxygenases and Lipid Signaling in Vascular Cells in Diabetes. Frontiers in Bioscience 2003;8:s783–s795.

    PubMed  CAS  Google Scholar 

  61. Natarajan R, Gerrity RG, Gu JL, Lanting L, Thomas L, Nadler JL. Role of 12-lipoxygenase and oxidant stress in hyperglycemia-induced acceleration of atherosclerosis in a diabetic pig model. Diabetologia 2002;45:125–133.

    PubMed  CAS  Google Scholar 

  62. Gerrity RG, Natarajan R, Nadler JL, Kimsey T. Diabetes-induced accelerated atherosclerosis in swine. Diabetes 2001;50:1654–1665.

    PubMed  CAS  Google Scholar 

  63. Takahashi K, Ghater MA, Lam HC, O’Halloran DJ, Bloom SR. Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia 1990;33:306–350.

    PubMed  CAS  Google Scholar 

  64. Shin SJ, Lee YJ, Tsai JH. The correlation of plasma and urine endothelin-1 with the severity of nephropathy in Chinese patients with type 2 diabetes. Scand J Clin Lab Invest 1996;56:571–576.

    PubMed  CAS  Google Scholar 

  65. Letizia C, Iannaccone A, Cerci S, et al. Circulating endothelin 1 in NIDDM with retinopathy. Horm Metab Res 1997;29:247–251.

    PubMed  CAS  Google Scholar 

  66. Guvener N, Aytemir K, Aksoyek S, Gedik O. Plasma endothelin-1 levels in non-insulin dependent diabetes mellitus patients with macrovascular disease, Coronary Artery Disease 1997;8:253–258.

    PubMed  CAS  Google Scholar 

  67. Bertello P, Veglio F, Pinna G, et al. Plasma endothelin in NIDDM patients with and without complications, Diabetes Care 1994;17:574–577.

    PubMed  CAS  Google Scholar 

  68. Metsarinne K, Saijonmaa O, Yki-Jarvinen H, Fyhrquist F. Insulin increases the release of endothelin in endothelial cell cultures in vitro but not in vivo. Metabolism 1994;43:878–882.

    PubMed  CAS  Google Scholar 

  69. Hattori Y, Kasai K, Nakamura T, Emoto T, Shimoda S. Effects of glucose and insulin on immunoreactive endothelin-1 release from cultured porcine aortic endothelial cells. Metabolism 1991;40:165–169.

    PubMed  CAS  Google Scholar 

  70. Anfossi G, Cavalot F, Massucco P, et al. Insulin influences immunoreactive endothelin release by human vascular smooth muscle cells. Metabolism 1993;42:1081–1083.

    PubMed  CAS  Google Scholar 

  71. Ferri C, Bellini C, Desideri G, De Mattia G, Santucci A. Endogenous insulin modulates circulating endothelin-1 concentrations in humans. Diabetes Care 1996;19:504–506.

    PubMed  CAS  Google Scholar 

  72. Piatti PM, Monti LD, Conti M, et al. Hypertriglyceridemia and hyperinsulinemia are potent inducers of endothelin-1 release in humans. Diabetes 1996;45:316–321.

    PubMed  CAS  Google Scholar 

  73. Katsumori K, Wasada T, Saeki A, Naruse M, Omori Y. Lack of acute insulin effect on plasma endothelin-1 levels in humans. Diabet Res Clin Pract 1996;32:187–189.

    CAS  Google Scholar 

  74. Lip GY, Lann A. von Willebrand factor: A marker of endothelial dysfunction in vascular disorders? Cardiovasc Res 1997;34:255–265.

    PubMed  CAS  Google Scholar 

  75. Standl E, Balletshofer B, Dahl B, et al. Predictors of 10-year macrovascular and overall mortality in patients with NIDDM: the Munich General Practitioner Project. Diabetologia 1996;39:1540–1545.

    PubMed  CAS  Google Scholar 

  76. Stehouwer CDA, Nauta JJ, Zeldenrust GC, Hackeng WH, Donker AJ. Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin dependent diabetes mellitus. Lancet 1992;340:319–323.

    PubMed  CAS  Google Scholar 

  77. Thomsen C, Rasmussen OW, Ingerslev J, Hermansen K. Plasma levels of von Willebrand factor in non-insulin dependent diabetes mellitus are influenced by dietary monounsaturated fatty acids. Thromb Res 1995;77:347–356.

    PubMed  CAS  Google Scholar 

  78. Carter AM, Grant PJ. Vascular homeostasis, adhesion molecules, and macrovascular disease in non-insulin dependent diabetes mellitus. Diab Med 1997;14:423–432.

    CAS  Google Scholar 

  79. De Meyer GR, Herman AG. Vascular endothelial dysfunction. Prog Cardiovasc Dis 1997;39:325–342.

    PubMed  Google Scholar 

  80. O’Brien KD, Allen MD, McDonald TO, et al. Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. J Clin Invest 1993;92:945–951.

    PubMed  CAS  Google Scholar 

  81. Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, Kyriakopoulos A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol 1993;171:223–229.

    PubMed  CAS  Google Scholar 

  82. Poston RN, Haskard DO, Croucher JR, Gall NP, Johnson-Tidey RR. Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. Am J Pathol 1992;140:665–673.

    PubMed  CAS  Google Scholar 

  83. Seth R, Raymond FD, Makgoba MW. Circulating ICAM-1 isoforms: diagnostic prospects for inflammatory and immune disorders. Lancet 1991;338:83–84.

    PubMed  CAS  Google Scholar 

  84. Pigott R, Dillon LP, Hemingway IH. Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun 1992;187:584–589.

    PubMed  CAS  Google Scholar 

  85. Gearing AJH, Hemingway I, Pigott R, Hughes J, Rees AJ, Cashman SJ. Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1 and VCAM-1: pathological significance. Annals NY Acad Sci 1992;667:324–331.

    CAS  Google Scholar 

  86. Lampeter ER, Kishimoto TK, Rothlein R, et al. Elevated levels of circulating adhesion molecules in IDDM patients and in subjects at risk for IDDM. Diabetes 1992;41:1668–1671.

    PubMed  CAS  Google Scholar 

  87. Steiner M, Reinhardt KM, Krammer B, Ernst B, Blann AD. Increased levels of soluble adhesion molecules in type 2 (non-insulin dependent) diabetes mellitus are independent of glycemic control. Thromb Haemostas 1994;72:979–984.

    CAS  Google Scholar 

  88. Otsuki M, Hashimoto K, Morimoto Y, Kishimoto T, Kasayama S. Circulating vascular cell adhesion molecule-1 (VCAM-1) in atherosclerotic NIDDM patients. Diabetes 1997;46:2096–2101.

    PubMed  CAS  Google Scholar 

  89. Kowalska I, Straczkowski M, Szelachowska M, et al. Circulating E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 in men with coronary artery disease assessed by angiography and disturbances of carbohydrate metabolism. Metabolism 2002;51:733–736.

    PubMed  CAS  Google Scholar 

  90. Matsumoto K, Sera Y, Ueki Y, Inukai G, Niiro E, Miyake S. Comparison of serum concentrations of soluble adhesion molecules in diabetic microangiopathy and macroangiopathy. Diabet Med 2002;19:822–826.

    PubMed  CAS  Google Scholar 

  91. Jude EB, Douglas JT, Anderson SG, Young MJ, Boulton AJ. Circulating cellular adhesion molecules ICAM-1, VCAM-1, P-and E-selectin in the prediction of cardiovascular disease in diabetes mellitus. Eur J Intern Med 2002;13:185–189.

    PubMed  CAS  Google Scholar 

  92. Koyama H, Maeno T, Fukumoto S, et al. Platelet P-selectin expression is associated with atherosclerotic wall thickness in carotid artery in humans. Circulation 2003;108:524–529.

    PubMed  CAS  Google Scholar 

  93. Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM01) expression and atheroma formation in normal rabbits. Molecular Medicine 1995;1:447–456.

    PubMed  CAS  Google Scholar 

  94. Virella G, Munoz Jose F, Galbraith Gillian MP, Gisinger C, Chassereau C, Virella MF. Activation of human monocyte-derived macrophages by immune complexes containing low density lipoprotein. Clin Immunology and Immunopathology 1995;75:179–189.

    CAS  Google Scholar 

  95. Wong BW, Wong D, McManus BM. Characterization of fractalkine (CX3CL1) and CX3CR1 in human coronary arteries with native atherosclerosis, diabetes mellitus, and transplant vascular disease. Cardiovasc Pathol 2202;11:332–338.

    Google Scholar 

  96. Beekhuizen H, van Furth R. Monocyte adherence to human vascular endothelium. Leukoc Biol 1993;54:363–378.

    CAS  Google Scholar 

  97. Pohlman TH, Staness KA, Beatty, PG, Oehs HD, Harlan JM. An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factor a increases neutrophil adherence by a CDw18-dependent mechanism. J Immunol 1986;136:4548–4553.

    PubMed  CAS  Google Scholar 

  98. Dixon JL, Stoops JD, Parker JL, Laughlin MH, Weisman GA, Sturek M. Dyslipidemia and vascular dysfunction in diabetic pigs fed an atherogenic diet. Arterioscler Thromb Vasc Biol 1999;19:2981–2992.

    PubMed  CAS  Google Scholar 

  99. Renard CB, Suzuki LA, Kramer F, et al. A new murine model of diabetes-accelerated atherosclerosis. Diabetes 2002;51(Suppl 2):724.

    Google Scholar 

  100. Simionescu MD, Popov A, Sima MH, et al. Pathobiochemistry of combined diabetes and atherosclerosis studied on a novel animal model. The hyperlipemic-hyperglycemic hamster. Am J Pathol 1996;148:997–1014.

    PubMed  CAS  Google Scholar 

  101. McGill HC Jr, McMahan CA, Malcom GT, Oalmann MC, Strong JP. Relation of glycohemoglobin and adiposity to atherosclerosis in youth. Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol 1995;15:431–440.

    PubMed  Google Scholar 

  102. McGill HC Jr, McMahan CA, Zieske AW, Malcom GT, Tracy RE, Strong J P. Effects of non-lipid risk factors on atherosclerosis in youth with a favorable lipid profile. Circulation 2001;103:1546–1550.

    PubMed  CAS  Google Scholar 

  103. Jarvisalo MJ, Putto-Laurila A, Jartti L, et al. Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes 2002;51:493–498.

    PubMed  CAS  Google Scholar 

  104. Griffith RL, Virella GT, Stevenson HC, Lopes-Virella MF. LDL metabolism by macrophages activated with LDL immune complexes: A possible mechanism of foam cell formation. J Exp Med 1988;168:1041–1059.

    PubMed  CAS  Google Scholar 

  105. Lopes-Virella MF, Griffith RL, Shunk KA, Virella GT. Enhanced uptake and impaired intracellular metabolism of low density lipoprotein complexed with anti-low density lipoprotein antibodies. Arteriosclerosis and Thrombosis 1991;11:1356–1367.

    PubMed  CAS  Google Scholar 

  106. Laakso M, Pyorala K. Lipid and lipoprotein abnormalities in diabetic patients with peripheral vascular disease. Atherosclerosis 1988;74:55–63.

    PubMed  CAS  Google Scholar 

  107. Lopes-Virella MF, Stone PG, Colwell JA. Serum high density lipoprotein in diabetes. Diabetologia 1977;13:285–291.

    PubMed  CAS  Google Scholar 

  108. Lopes-Virella MF, Wohltmann HJ, Mayfield RK, Laodholt CB, Colwell JA. Effect of metabolic control on lipid, lipoprotein and apolipoprotein levels in 55 insulin-dependent diabetic patients: a longitudinal study. Diabetes 1983;32:20–25.

    PubMed  CAS  Google Scholar 

  109. Sosenko JM, Breslow JL, Miettinen OS, Gabbay KH. Hyperglycemia and plasma lipid levels: a prospective study of young insulin-dependent diabetic patients. N Engl J Med 1980;302:650–654.

    PubMed  CAS  Google Scholar 

  110. Joven J, Vilella E, Costa B, Turner PR, Richart C, Masana L. Concentrations of lipids and apolipoproteins in patients with clinically well-controlled insulin-dependent and non-insulin-dependent diabetes. Clin Chem 1989;35:813–816.

    PubMed  CAS  Google Scholar 

  111. Reaven GM, Javorski WC, Reaven EP. Diabetic hypertriglyceridemia. Am J Med Sci 1975;269:382–389.

    PubMed  CAS  Google Scholar 

  112. Uusitupa MI, Niskanen LK, Siitonen O, Voutilainen E, Pyorala K. 5-year incidence of atherosclerotic vascular disease in relation of general risk factors, insulin level, and abnormalities in lipoprotein composition in non-insulin-dependent diabetic and nondiabetic subjects. Circulation 1990;82:27–36.

    PubMed  CAS  Google Scholar 

  113. Nikilla EA. High density lipoproteins in diabetes. Diabetes 1981;30:82–87.

    Google Scholar 

  114. Kasim SE, Tseng K, Jen KL, Khilnani S. Significance of hepatic triglyceride lipase activity in the regulation of serum high density lipoproteins in type II diabetes mellitus. J Clin Endocrinol Metab 1987;65:183–187.

    PubMed  CAS  Google Scholar 

  115. Semenkovich CF, Ostlund RE Jr, Schechtman KB. Plasma lipids in patients with type I diabetes mellitus: influence of race, gender and plasma glucose control: lipids do not correlate with glucose control in black women. Arch Intern Med 1989;149:51–56.

    PubMed  CAS  Google Scholar 

  116. Wang-Iverson P, Ginsberg HN, Peteanu LA, Le NA, Brown WV. Apo E-mediated uptake and degradation of normal very low density lipoproteins by human monocyte/macrophages: a saturable pathway distinct from the LDL receptor. Biochem Biophys Res Commun 1985;126:578–586.

    PubMed  CAS  Google Scholar 

  117. Havel RJ, Chao Y, Windler EE, Kotite L, Guo LS. Isoprotein specificity in the hepatic uptake of apolipoprotein E and the pathogenesis of familial dysbetalipoproteinemia. Proc Natl Acad Sci USA 1980;77:4349–4353.

    PubMed  CAS  Google Scholar 

  118. Witztum JL, Fisher M, Pietro T, Steinbrecher UP, Elam RL. Nonenzymatic glucosylation of high-density lipoprotein accelerates its catabolism in guinea pigs. Diabetes 1982;31:1029–1032.

    PubMed  CAS  Google Scholar 

  119. Klein RL, Lyons TJ, Lopes-Virella MF. Metabolism of very low and low density lipoproteins isolated from normolipidaemic type II (non-insulin dependent) diabetic patients by human monocyte-derived macrophages. Diabetologia 1990;33:299–305.

    PubMed  CAS  Google Scholar 

  120. Klein RL, Lyons TJ, Lopes-Virella MF. Interaction of VLDL isolated from type I diabetic subjects with human monocyte-derived macrophages. Metabolism 1989;38:1108–1114.

    PubMed  CAS  Google Scholar 

  121. Lopes-Virella MF, Sherer GK, Lees AM, et al. Surface binding, internalization and degradation by cultured human fibroblasts of low density lipoproteins isolated from type I (insulin-dependent) diabetic patients: changes with metabolic control. Diabetologia 1982;22:430–436.

    PubMed  CAS  Google Scholar 

  122. Hiramatsu K, Bierman EL, Chair A. Metabolism of LDL from patients with diabetic hypertriglyceridemia by cultured human skin fibroblasts. Diabetes 1985;34:8–14.

    PubMed  CAS  Google Scholar 

  123. Bagdade JD, Subbaiah PV. Whole-plasma and high-density lipoprotein subfraction surface lipid composition in IDDM men. Diabetes 1989;38:1226–1230.

    PubMed  CAS  Google Scholar 

  124. Bagdade JD, Buchanan WE, Kuusi T, Taskinen MR. Persistent abnormalities in lipoprotein composition in non-insulin dependent diabetes after intensive insulin therapy. Arteriosclerosis 1990;10:232–239.

    PubMed  CAS  Google Scholar 

  125. James RW, Pometta D. The distribution profiles of very low and low density lipoproteins in poorly controlled male, type II (non-insulin dependent) diabetic patients. Diabetologia 1991;34:246–252.

    PubMed  CAS  Google Scholar 

  126. James RW, Pometta D. Differences in lipoprotein subfraction composition and distribution between type I diabetic men and control subjects. Diabetes 1990;39:1158–1164.

    PubMed  CAS  Google Scholar 

  127. Stein Y, Glangeaud MC, Fainaru M, Stein O. The removal of cholesterol from aortic smooth muscle cells in culture and Landschutz ascites cell fractions of human high density apoproteins. Biochem Biophs Acta 1975;380:106–118.

    CAS  Google Scholar 

  128. Fielding DF, Reaven GM, Fielding PE. Human non-insulin dependent diabetes: Identification of a defect in plasma cholesterol transport normalized in vivo by insulin and in vitro by immunoabsorption of apolipoprotein E. Proc Natl Acad Sci USA 1982;79:6365–6369.

    PubMed  CAS  Google Scholar 

  129. Fielding CJ, Reaven GM, Liu G, Fielding PE. Increased free cholesterol in plasma low and very low density lipoproteins in non-insulin dependent diabetes mellitus: its role in the inhibition of cholesteryl ester transfer. Proc Natl Acad Sci USA 1984;81:2512–2516.

    PubMed  CAS  Google Scholar 

  130. Biesbroeck RC, Albers JJ, Wahl PW, Weinberg CR. Abnormal composition of high-density lipoproteins in non-insulin dependent diabetics. Diabetes 1982;31:126–131.

    PubMed  CAS  Google Scholar 

  131. Uusitupa M, Siitonen O, Voutilainen E, et al. Serum lipids and lipoproteins in newly diagnosed non-insulin dependent (type II) diabetic patients, with special reference to factors influencing HDL-cholesterol and triglyceride levels. Diabetes Care 1986;9:17–22.

    PubMed  CAS  Google Scholar 

  132. Ronnemaa T, Laakso M, Kallio V, Pyorala K, Marniemi J, Puukka P. Serum lipids, lipoproteins, and apolipoproteins and the excessive occurrence of coronary heart disease in non-insulin-dependent diabetic patients. Am J Epidemiol 1989;130:632–645.

    PubMed  CAS  Google Scholar 

  133. Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human body. Angew Chem (Int Ed Engl) 1990;29:565–594.

    Google Scholar 

  134. Ahmed MU, Thorpe SR, Baynes JW. Identification of carboxymethyllysine as a degradation product of fructose-lysine in glycosylated protein. J Biol Chem 1986;261:4889–4994.

    PubMed  CAS  Google Scholar 

  135. Sell DR, Monnier VM. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. JH Biol Chem 1989;264:21,597–21,602.

    CAS  Google Scholar 

  136. Hayase F, Nagaraj RH, Miyata S, Njoroge FG, Monnier VM. Aging of proteins: immunological detection of a glucose-derived pyrrole formed during Maillard reaction in vivo. J Biol Chem 1989;263:3758–3764.

    Google Scholar 

  137. Ienaga K, Nakamura K, Hochi T, et al. Crosslines, fluorophores in the AGE-related crosslinked proteins. Contrib Nephrol 1995;112:42–51.

    PubMed  CAS  Google Scholar 

  138. Fu M-X, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe ST, Baynes JW. Glycation, glycoxidation and cross-linking of collagen by glucose. Kinetics, mechanisms and inhibition of late stages. Diabetes 1994;43:676–683.

    PubMed  CAS  Google Scholar 

  139. Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. The advanced glycation end-product, N (carboxymethyl) lysine (CML), is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem 1996;271:9982–9986.

    PubMed  CAS  Google Scholar 

  140. Requena JR, Fu MX, Ahmed MU, et al. Quantitation of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidized human LDL. Biochem J 1997;322:317–325.

    PubMed  CAS  Google Scholar 

  141. Requena JR, Ahmed MU, Fountain CW, et al. N-(carboxymethyl) ethanolamine: a biomarker of phospholipid modification by the Maillard Reaction in vivo. J Biol Chem 1997;272:17,473–17,479.

    PubMed  CAS  Google Scholar 

  142. Pushkarsky T, Rourke L, Spiegel LA, Seldin MF, Bucala R. Molecular characterization of a mouse genomic element mobilized by advanced glycation endproduct modified-DNA (AGE-DNA). Mol Med 1997;3:740–749.

    PubMed  CAS  Google Scholar 

  143. Schleicher E, Deufel T, Wieland OH. Non-enzymatic glycation of human serum lipoproteins. FEBS Lett 1987;129:1–4.

    Google Scholar 

  144. Lyons TJ, Patrick JS, Baynes JW, Colwell JA, Lopes-Virella MF. Glycation of low density lipoprotein in patients with type 1 diabetes: Correlations with other parameters of glycemic control. Diabetologia 1986;29:685–689.

    PubMed  CAS  Google Scholar 

  145. Pietri A, Dunn FL, Raskin P. The effect of improved diabetic control on plasma lipid and lipoprotein levels. A comparison of conventional therapy and subcutaneous insulin infusion. Diabetes 1980;29:1001–1005.

    PubMed  CAS  Google Scholar 

  146. Abrams JJ, Ginsberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes 1982;31:903–910.

    PubMed  CAS  Google Scholar 

  147. Dunn FL, Raskin P, Bilheimer DW. The effect of diabetic control on very low density lipoprotein-triglyceride metabolism in patients with type II diabetes mellitus and marked hypertriglyceridemia. Metabolism 1984;33:117–123.

    PubMed  CAS  Google Scholar 

  148. Weisgraber KH, Innerarity TL, Mahley RW. Role of the lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem 1978;253:9053–9062.

    PubMed  CAS  Google Scholar 

  149. Sasaki J, Cottam GL. Glycation of LDL decreases its ability to interact with high-affinity receptors of human fibroblasts in vitro and decreases its clearance from rabbit plasma in vivo. Biochim Biophys Acta 1982;713:199–207.

    PubMed  CAS  Google Scholar 

  150. Steinbrecher UP, Witztum JL. Glucosylation of low density lipoproteins to an extent comparable to that seen in diabetes slows their catabolism. Diabetes 1984;33:130–134.

    PubMed  CAS  Google Scholar 

  151. Lopes-Virella MF, Klein RL, Lyons TJ, Stevenson HC, Witztum JL. Glycation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes 1988;37:550–557.

    PubMed  CAS  Google Scholar 

  152. Klein RL, Laimins M, Lopes-Virella MF. Isolation, characterization and metabolism of the glycated and non-glycated subfractions of low density lipoproteins isolated from type I diabetic patients and non-diabetic subjects. Diabetes 1995;44:1093–1098.

    PubMed  CAS  Google Scholar 

  153. Watanabe J, Wohltmann HJ, Klein RL, Colwell JA, Lopes-Virella MF. Enhancement of platelet aggregation by low density lipoproteins from IDDM patients. Diabetes 1988;37:1652–1657.

    PubMed  CAS  Google Scholar 

  154. Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci USA 1993;90:6434–6438.

    PubMed  CAS  Google Scholar 

  155. Hunt JV, Smith CCT, Wolff SP. Autooxidative glycation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 1990;39:1420–1424.

    PubMed  CAS  Google Scholar 

  156. Kawamura M, Heinecke JW, Chait A. Pathophysiological concentrations of glucose promote oxidative modification of LDL by a superoxide-dependent pathway. J Clin Invest 1994;94:771–778.

    PubMed  CAS  Google Scholar 

  157. Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 1990;173:932–939.

    PubMed  CAS  Google Scholar 

  158. Brownlee M, Vlassara H, Cerami A. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes 1985;34:938–941.

    PubMed  CAS  Google Scholar 

  159. Tsai EC, Hirsch IB, Brunzell JD, Chait A. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes 1994;1010–1014.

    Google Scholar 

  160. Jenkins AJ, Klein RL, Chassereau CH, Hermayer KL, Lopes-Virella MF. LDL from patients with well controlled IDDM is not more susceptible to in vitro oxidation. Diabetes 1996;45:762–767.

    PubMed  CAS  Google Scholar 

  161. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 1988;241:215–218.

    PubMed  CAS  Google Scholar 

  162. Rosenfeld ME, Palinski W, Yla-Herttula S, Butler S, Witztum JL. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 1990;10:336–349.

    PubMed  CAS  Google Scholar 

  163. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 1987;84:7725–7729.

    PubMed  CAS  Google Scholar 

  164. Palinski W, Koschinsky T, Butler S, et al. Immunological evidence for the presence of AGE in atherosclerotic lesions of euglycemic rabbits. Arterioscler Thromb Vasc Biol 1995;15:571–582.

    PubMed  CAS  Google Scholar 

  165. Bucciarelli LG, Wendt T, Qu W, et al. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 2002;106:2827–2835.

    PubMed  CAS  Google Scholar 

  166. Sakaguchi T, Yan SF, Yan SD, et al. Central role of RAGE-dependent neointimal expansion in arterial restenosis. J Clin Invest 2003;111:959–972.

    PubMed  CAS  Google Scholar 

  167. Regnstrom J, Nilsson J, Tornvall P, Landou C, Hamsten A. Susceptibility to LDL oxidation and coronary atherosclerosis in man. Lancet 1991:339:1183–1186.

    Google Scholar 

  168. Chiu HC, Jeng JR, Shieh SM. Increased oxidizability of plasma LDL from patients with coronary heart disease. Biochim Biophys Acta 1994;225:200–208.

    Google Scholar 

  169. Andrews B, Burnand K, Paganga G, et al. Oxidizability of LDL in patients with carotid or femoral artery atherosclerosis. Atherosclerosis 1995;112:77–84.

    PubMed  CAS  Google Scholar 

  170. Penn MS, Chisolm GM. Oxidized lipoproteins, altered cell function and atherosclerosis. Atherosclerosis 1994;108:S21–S29.

    PubMed  Google Scholar 

  171. Nagano Y, Arai H, Kita T. High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cells after oxidative modification. Proc Natl Acad Sci USA 1991;88:6457–6461.

    PubMed  CAS  Google Scholar 

  172. Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci USA 1992;89:10,316–10,320.

    PubMed  CAS  Google Scholar 

  173. Palinski W, Yla-Herttuala S, Rosenfeld ME, et al. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 1990:10,325–335.

    Google Scholar 

  174. Maggi E, Chiesa R, Melissano G, et al. LDL oxidation in patients with severe carotid atherosclerosis. A study of in vitro and in vivo oxidation markers. Arterioscler Thromb 1994;14:1892–1899.

    PubMed  CAS  Google Scholar 

  175. Salonen JT, Yla-Herttuala S, Yamamoto R, et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992;339:883–887.

    PubMed  CAS  Google Scholar 

  176. Lehtimaki T, Lehtinen S, Solakivi T, et al. Autoantibodies against oxidized low density lipoprotein in patients with angiographically verified coronary artery disease. Arterioscl Thromb Vasc Biol 1999;19:23–27.

    PubMed  CAS  Google Scholar 

  177. Erkkilä AT, Närvänen O, Lehto S, Uusitupa MIJ, Ylä-Herttuala S. Autoantibodies against oxidized low-density lipoprotein and cardiolipin in patients with coronary heart disease. Arterioscl Thromb Vasc Biol 2000;20:204–209.

    PubMed  Google Scholar 

  178. Bellomo G, Maggi E, Poli M, Agosta FG, Bollati P, Finardi G. Autoantibodies against oxidatively modified low-density lipoproteins in NIDDM. Diabetes 1995;44:60–66.

    PubMed  CAS  Google Scholar 

  179. Turk Z, Ljubic S, Turk N, Benko B. Detection of autoantibodies against advanced glycation endproducts and AGE-immune complexes in serum of patients with diabetes mellitus. Clin Chim Acta 2001;303:105–115.

    PubMed  CAS  Google Scholar 

  180. Virella G, Virella I, Leman RB, Pryor MB, Lopes-Virella MF. Anti-oxidized low-density lipoprotein antibodies in patients with coronary heart disease and normal healthy volunteers. Int J Clin Lab Res 1993;23:95–101.

    PubMed  CAS  Google Scholar 

  181. Boullier A, Hamon M, Walters-Laporte E, et al. Detection of autoantibodies against oxidized low-density lipoproteins and of IgG-bound low density lipoproteins in patients with corocnary artery disease. Clin Chim Acta 1995;238:1–10.

    PubMed  CAS  Google Scholar 

  182. Uusitupa MIJ, Niskanen L, Luoma J, Vilja, P. Rauramaa R, Ylä-Herttula S. Autoantibodies against oxidized LDL do not predict atherosclerosis vascular disease in non-insulin-dependent diabetes mellitus. Arterioscl Thromb Vasc Biol 1996;16:1236–1242.

    PubMed  CAS  Google Scholar 

  183. van de Vijver LP, Steyger R, van Poppel G, et al. Autoantibodies against MDA-LDL in subjects with severe and minor atherosclerosis and healthy population controls. Atherosclerosis 1996;122:245–253.

    PubMed  Google Scholar 

  184. Leinonen JS, Rantalaiho V, Laippala P, et al. The level of autoantibodies against oxidized LDL is not associated with the presence of coronary heart disease or diabetic kidney disease in patients with non-insulin-dependent diabetes mellitus. Free Radic Res 1998;29:137–141.

    PubMed  CAS  Google Scholar 

  185. Festa A, Kopp HP, Schernthaner G, Menzel EJ. Autoantibodies to oxidised low density lipoproteins in IDDM are inversely related to metabolic control and microvascular complications. Diabetologia 1998;41:350–356.

    PubMed  CAS  Google Scholar 

  186. Wu R, de Faire U, Lemne C, Witztum JL, Frostegard J. Autoantibodies to OxLDL are decreased in individuals with borderline hypertension. Hypertension 1999;33:53–59.

    PubMed  CAS  Google Scholar 

  187. Lopes-Virella MF, Virella G, Orchard TJ, et al. Antibodies to oxidized LDL and LDL-containing immune complexes as risk factors for coronary artery disease in diabetes mellitus. Clin Immunol 1999;90:165–172.

    PubMed  CAS  Google Scholar 

  188. Hulthe J, Wiklund O, Hurt-Camejo E, Bondjers G. Antibodies to oxidized LDL in relation to carotid atherosclerosis, cell adhesion molecules, and phospholipase A(2). Arterioscler Thromb Vasc Biol 2001;21:269–274.

    PubMed  CAS  Google Scholar 

  189. Shaw PX, Horkko S, Chang MK, et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity J Clin Invest 2000;105:1731–1740.

    PubMed  CAS  Google Scholar 

  190. Wu R, Lefvert AK. Autoantibodies against oxidized low density lipoproteins (oxLDL): characterization of antibody isotype, subclass, affinity and effect on the macrophage uptake of oxLDL. Clin Exp Immunol 1995;102:174–180.

    PubMed  CAS  Google Scholar 

  191. Palinski W, Witztum JL. Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis J Intern Med 2000;247:371–380.

    PubMed  CAS  Google Scholar 

  192. Hansson GK. Vaccination against atherosclerosis: science or fiction? Circulation 2002;106:1599–1601.

    PubMed  Google Scholar 

  193. Virella G, Koskinen S, Krings G, Onorato JM, Thorpe SR, Lopes-Virella M. Immunochemical Characterization of Purified Human Oxidized Low-Density Lipoprotein Antibodies. Clin Immunol 2000;95:135–144.

    PubMed  CAS  Google Scholar 

  194. Virella G, Thorpe, S, Alderson NL, et al., and the DCCT/EDIC Research Group. Autoimmune response to advanced glycosylation end-products of human low density lipoprotein. J. Lipid Research 2003;443:487–493.

    Google Scholar 

  195. Virella G, Tsokos G. Immune complex diseases. In: Virella G, (ed.). Medical Immunology, 5th edition. Marcel Dekker, NY, 2002, pp. 453–471.

    Google Scholar 

  196. Hulthe J, Bokemark L, Fagerberg B. Antibodies to oxidized LDL in relation to intima-media thickness in carotid and femoral arteries in 58-year-old subjectively clinically healthy men. Arterioscler Thromb Vasc Biol 2001;21:101–107.

    PubMed  CAS  Google Scholar 

  197. Fagerberg B, Bokemark L, Hulthe J. The metabolic syndrome, smoking, and antibodies to oxidized LDL in 58-year-old clinically healthy men. Nutr Metab Cardiovasc Dis 2001;11:227–235.

    PubMed  CAS  Google Scholar 

  198. Szondy E, Lengyel E, Mezey Z, Fust G, Gero S. Occurrence of anti-low-density lipoprotein antibodies and circulating immune complexes in aged subjects. Mechanisms of Aging and Development 1985;29:117–123.

    CAS  Google Scholar 

  199. Tertov VV, Orekhov AN, Kacharava AG, Sobenin IA, Perova NV, Smirnov VN. Low density lipoprotein-containing circulating immune complexes and coronary atherosclerosis. Experimental and Molecular Pathology 1990;52:300–308.

    PubMed  CAS  Google Scholar 

  200. Atchley D, Lopes-Virella MF, Zheng D, Virella G and the DCCT/EDIC Research Group. Oxidized LDL—Anti-Oxidized LDL Immune Complexes and Diabetic Nephropathy. Diabetologia 2002;45:1562–1571.

    PubMed  CAS  Google Scholar 

  201. Gisinger C, Virella GT, Lopes-Virella MF. Erthrocyte-bound low density lipoprotein (LDL) immune complexes lead to cholesteryl ester accumulation in human monocyte derived macrophages. Clin Immunol Immunopath 1991;59:37–52.

    CAS  Google Scholar 

  202. Lopes-Virella MF, BinZafar N, Rackley S, Takei A, LaVia M, Virella G. The Uptake of LDL-IC by Human Macrophages: Predominant Involvement of the FcgR I. Atherosclerosis, 1997;135:161–170.

    PubMed  CAS  Google Scholar 

  203. Huang Y, Ghosh MJ, Lopes-Virella MF. Transcriptional and Post-transcriptional Regulation of LDL Receptor Gene Expression in PMA-treated THP-1 Cells by LDL-Containing Immune Complexes. Journal of Lipid Research 1997;38:110–120.

    PubMed  CAS  Google Scholar 

  204. Vlassara H, Brownlee M, Manogue KR, Dinarello CA, Pasagian A. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science 1988;240:1546–1548.

    PubMed  CAS  Google Scholar 

  205. Vlassara H, Brownlee M, Cerami A. Novel macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors. J Exp Med 1986;164:1301–1309.

    PubMed  CAS  Google Scholar 

  206. Vlassara H, Valinsky J, Brownlee M, Cerami C, Nishimoto S, Cerami A. Advanced glycosylation end products on erythrocyte cell surface induce receptor-mediated phagocytosis by macrophages. A model for turnover of aging cells. J Exp Med 1987;166:539–49.

    PubMed  CAS  Google Scholar 

  207. Virella G, Muñoz JF, Galbraith GMP, Gissinger C, Chassereau C, Lopes-Virella MF. Activation of human monocyte-derived macrophages by immune complexes containing low density lipoprotein. Clin Immunol Immunopath 1995;75:179–189.

    CAS  Google Scholar 

  208. Bevilacqua MP, Pober JS, Majeau GR, Cotran RS, Gimbrone MA Jr. Interleukin 1 induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med 1984;160:618–623.

    PubMed  CAS  Google Scholar 

  209. Breviario F, Bertocchi F, Dejana E, Bussolino F. IL-1 induced adhesion of polymorphonuclear leukocytes to cultured human endothelial cells. Role of platelet-activating factor. J Immunol 1988;141:3391–3397.

    PubMed  CAS  Google Scholar 

  210. Martin S, Maruta K, Burkart V, Gillis S, Kolb H. IL-1 and INF-γ increase vascular permeability. Immunology 1988;64:301–305.

    PubMed  CAS  Google Scholar 

  211. Warner SJC, Auger KR, Libby P. Interleukin 1 induces interleukin 1. II. Recombinant human interleukin 1 induces interleukin 1 production by adult human vascular endothelial cells. J Immunol 1987;139:1911–1917.

    PubMed  CAS  Google Scholar 

  212. Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989;243:393–396.

    PubMed  CAS  Google Scholar 

  213. Hansson GK, Jonasson L, Seifert PS, Stemme S. Immune mechanisms in atherosclerosis. Arteriosclerosis 1989;9:567–578.

    PubMed  CAS  Google Scholar 

  214. Nawroth PP, Bank I, Hadley D, Cassimeris J, Chess L, Stern D. Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J Exp Med 1986;165:1363–1375.

    Google Scholar 

  215. Kilpatrick JM, Hyman B, Virella G. Human endothelial cell damage induced by interactions between polymorphonuclear leukocytes and immune complex-coated erythrocytes. Clin. Immunol. Immunopath 1987;44:335–347.

    CAS  Google Scholar 

  216. Stevenson HC, Dekaban GA, Miller PJ, Benyajati C, Pearson ML. Analysis of human blood monocyte activation at the level of gene expression. J Exp Med 1985;161:503–513.

    PubMed  CAS  Google Scholar 

  217. Nathan CF, Murray HW, Cohn ZA. Current concepts: the macrophage as an effector cell. N Eng J Med 1980;303:622–626.

    CAS  Google Scholar 

  218. Ross R, Masuda J, Raines EW, et al. Localization of PDGF-b protein in macrophages in all phases of atherogenesis. Science 1990;248:1009–1012.

    PubMed  CAS  Google Scholar 

  219. Assoian RK, Fleurdelys BE, Stevenson HC, et al. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci USA 1987;84:6020–6024.

    PubMed  CAS  Google Scholar 

  220. Ferreri NR, Howland WC, Spiegelberg HL. Release of leukotrienes C4 and B4 and prostaglandin E2 from human monocytes stimulated with aggregated IgG, IgA, and IgE. J Immunol 1986;136:4188–4193.

    PubMed  CAS  Google Scholar 

  221. Musson RA, Shafran H, Henson PM. Intracellular levels and stimulated release of lysosomal enzymes from human peripheral blood monocytes and monocyte-derived macrophages. J Reticuloendothelial Soc 1980;28:249–264.

    CAS  Google Scholar 

  222. Werb Z, Bonda MJ, Jones PA. Degradation of connective tissue matrices by macrophages: I. Proteolysis of elastin, glycoproteins, and collagens by proteinases isolated from macrophages. J Exp Med 1980;152:1340–1357.

    PubMed  CAS  Google Scholar 

  223. Nakagawara A, Nathan CF, Cohn ZA. Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J Clin Invest 1981;68:1243–1252.

    PubMed  CAS  Google Scholar 

  224. Marx N, Imhof A, Froehlich J, et al. Effect of rosiglitazone treatment on soluble CD40L in patients with type 2 diabetes and coronary heart disease. Circulation 2003;107:1954–1957

    PubMed  CAS  Google Scholar 

  225. Falk E. (1992) Why do plaques rupture? Circulation 86(Suppl III):III-30–III-42.

    CAS  Google Scholar 

  226. Giroud D, Li JM, Urban P, Meier B, Rutishauser W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 1992;69:729–732.

    PubMed  CAS  Google Scholar 

  227. Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-moderate coronary artery disease? Circulation 1988;78:1157–1166.

    PubMed  CAS  Google Scholar 

  228. Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995;91:2844–2850.

    PubMed  CAS  Google Scholar 

  229. Amento EP, Ehsani N, Palmer H, Libby L. Cytokine positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 1991;11:1223–1230.

    PubMed  CAS  Google Scholar 

  230. Hansson GK, Holm J, Jonasson L. Detection of activated T lympohocytes in the human atherosclerotic plaques. Am J Pathol 1989;135:169–175.

    PubMed  CAS  Google Scholar 

  231. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44.

    PubMed  Google Scholar 

  232. Fuster V, Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 1994;90:2126–2146.

    PubMed  CAS  Google Scholar 

  233. Morton LF, Barnes MJ. Collagen polymorphism in the normal and diseased blood vessel wall. Investigation of collagens types I, III and V. Atherosclerosis 1982;42:41–51.

    PubMed  CAS  Google Scholar 

  234. Hanson AN, Bentley JP. Quantitation of type I to type III collagen ratios in small samples of human tendon, blood vessels, and atherosclerotic plaques. Anal Biochem 1983;130:32–40.

    PubMed  CAS  Google Scholar 

  235. Matrisian LM. The matrix-degrading metalloproteinases. BioEssays 1992;14:455–463.

    PubMed  CAS  Google Scholar 

  236. Sukhova G, Schoenbeck U, Rabkin E, et al. Colocalization of the interstitial collagenase MMP-1 & MMP-13 with sites of cleaved collagen indicates their role in plaque destabilization. Circulation (Suppl) 1998;98:I–48.

    Google Scholar 

  237. Huang Y, Mironova M, Lopes-Virella MF. Oxidized LDL stimulates matrix metalloproteinase-1 expression in human vascular endothelial cells. Arterioscler Thromb Vasc Biol 1999;19:2640–2647.

    PubMed  CAS  Google Scholar 

  238. Huang Y, Fleming AJ, Wu S, Virella G, Lopes-Virella MF. Fc-gamma receptor cross-linking by immune complexes induces matrix metalloproteinase-1 in U937 cells via mitogen-activated protein kinase. Arterioscler Thromb Vasc Biol 2000;20:2533–2538.

    PubMed  CAS  Google Scholar 

  239. Huang Y, Song L, Wu S, Fan F, Lopes-Virella MF. Oxidized LDL differentially regulates MMP-1 and TIMP-1 expression in vascular endothelial cells. Atherosclerosis 2001;156:119–125.

    PubMed  CAS  Google Scholar 

  240. Marx N, Froehlich J, Siam L, et al. Antidiabetic PPAR-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2003;23:283–288.

    PubMed  CAS  Google Scholar 

  241. Uemura S, Matushita H, Li W, et al. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res 2001;88:1291–1298.

    PubMed  CAS  Google Scholar 

  242. Shi GP, Munger JS, Meara JP, Rich DH, Chapman HA. Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J Biol Chem 1992;267:7258–7262.

    PubMed  CAS  Google Scholar 

  243. Kafienah W, Bromme D, Buttle DJ, Croucher LJ, Hollander AP. Human Cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem J 1998;331:727–732.

    PubMed  CAS  Google Scholar 

  244. Reddy VY, Zhang QY, Weiss SJ. Pericellular mobilization of the tissue-destructive cysteine proteinases, cathepins B, L, and S, by human monocyte-derived macrophages. Proc Natl Acad Sci USA 1995;92:3849–3853.

    PubMed  CAS  Google Scholar 

  245. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 1998;102:576–583.

    PubMed  CAS  Google Scholar 

  246. Jormsjo S, Wuttge DM, Sirsjo A, et al. Differential expression of cysteine and aspartic proteases during progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 2002;161:939–945.

    PubMed  Google Scholar 

  247. Chen J, Tung C-H, Mahmood U, et al. In vivo imaging of proteolytic activity in atherosclerosis. Circulation 2002;105:2766–2771.

    PubMed  Google Scholar 

  248. Gacko M, Glowinski S. Cathepsin D and cathepsin L activities in aortic aneurysm wall and parietal thrombus. Clin Chem Lab Med 1998;36:449–452.

    PubMed  CAS  Google Scholar 

  249. Shi GP, Sukhova GK, Grubb A, et al. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest 1999;104:1191–1197.

    PubMed  CAS  Google Scholar 

  250. Schaub FJ, Han DK, Liles WC, et al. Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nature Med 2000;6:790–796.

    PubMed  CAS  Google Scholar 

  251. Tedgui A, Mallat Z. Apoptosis as a determinant of atherothrombosis. Thromb Haemost 2001,86:420–426.

    PubMed  CAS  Google Scholar 

  252. Moons AH, Levi M, Peters RJ. Tissue factor and coronary heart disease. Cardiovasc Res 2002;53:313–325.

    PubMed  CAS  Google Scholar 

  253. Colwell JA, Halushka PV. Platelet function in diabetes mellitus. Br J Haematol 1980;44:521–526.

    PubMed  CAS  Google Scholar 

  254. Colwell JA. Antiplatelet drugs and prevention of macrovascular disease in diabetes mellitus. Metabolism 1992;41(Suppl 1):7–10.

    PubMed  CAS  Google Scholar 

  255. Stringer HA, van Swieten P, Heijnen HF, Sixma JJ, Pannekoek H. Plasminogen activator inhibitor-1 released from activated platelets plays a key role in thrombolysis resistance. Studies with thrombi generated in the Chandler loop. Arterioscler Thromb 1994;14:1452–1458.

    PubMed  CAS  Google Scholar 

  256. Jokl R, Laimins M, Klein RL, Lyons TJ, Lopes-Virella MF, Colwell JA. Platelet plasminogen activator inhibitor 1 in patients with type II diabetes. Diabetes Care 1994;17:818–823.

    PubMed  CAS  Google Scholar 

  257. Jokl R, Klein RL, Lopes-Virella MF, Colwell JA. Release of platelet plasminogen activator inhibitor 1 in whole blood is increased in patients with type II diabetes. Diabetes Care 1995;18:1150–1155.

    PubMed  CAS  Google Scholar 

  258. Loscalzo J. The relation between atherosclerosis and thrombosis. Circulation 1992;86:Suppl III:95–99.

    Google Scholar 

  259. Fuller JH. Haemostatic variables associated with diabetes and its complications. Br Med J 1979;2:964–966.

    PubMed  CAS  Google Scholar 

  260. Kannel WB, Wolf PA, Castelli WP, D’Agostino RB. Fibrinogen and risk of cardiovascular disease: the Framingham study. JAMA 1987;258:1183–1186.

    PubMed  CAS  Google Scholar 

  261. Jones RL, Peterson CM. Reduced fibrinogen survival in diabetes mellitus. J Clin Invest 1979;63:485–493.

    PubMed  CAS  Google Scholar 

  262. Jones RL, Jovanovic L, Forman S, Peterson CM. Time course of reversibility of accelerated fibrinogen disappearance in diabetes mellitus: association with intravascular volume shifts. Blood 1984;63:22–30.

    PubMed  CAS  Google Scholar 

  263. Leurs PB, van Oerle R, Wolffenbuttel BH, Hamulyak K. Increased tissue factor pathway inhibitor (TFPI) and coagulation in patients with insulin-dependent diabetes mellitus. Thromb Haemost 1997;77:472–476.

    PubMed  CAS  Google Scholar 

  264. Ceriello A, Giugliano D, Quatraro A, et al. Induced hyperglycemia alters antithrombin III activity but not plasma concentration in healthy normal subjects. Diabetes 1987;36:320–323.

    PubMed  CAS  Google Scholar 

  265. Ceriello A, Giugliano D, Quatraro A, Marchi E, Barbanti M, Lefebvre P. Evidence for a hyperglycemia-dependent decrease of antithrombin complex formation in humans. Diabetologia 1990;33:163–167.

    PubMed  CAS  Google Scholar 

  266. De Feo P, Gaisano MG, Haymond MW. Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans. J Clin Invest 1991;88:833–840.

    PubMed  Google Scholar 

  267. Hornsby WG, Boggess KA, Lyons TJ, Barnwell WH, Lazarchick J, Colwell JA. Hemostatic alterations with exercise conditioning in NIDDM. Diabetes Care 1990;13:87–92.

    PubMed  CAS  Google Scholar 

  268. Jones RL. Fibrinopeptide-A in diabetes mellitus. Diabetes 1985;34:836–843.

    PubMed  CAS  Google Scholar 

  269. Rosove MH, Frank HJL, Harwing SSL. Plasma beta-thromboglobulin, platelet factor 4, fibrinopeptide A, and other hemostatic functions during improved, short-term glycemic control in diabetes mellitus. Diabetes Care 1984;7:174–179.

    PubMed  CAS  Google Scholar 

  270. Ford I, Singh TP, Kitchen S, Makris M, Ward JD, Preston FE. Activation of coagulation in diabetes mellitus in relation to the presence of vascular complications. Diabetic Med 1991;8:322–329.

    PubMed  CAS  Google Scholar 

  271. Marmur JD, Merlini PA, Sharma S, et al. Thrombin generation in human coronary arteries after percutaneous transluminal balloon angioplasty. J Am Coll Cardiol 1994;24:1484–1491.

    PubMed  CAS  Google Scholar 

  272. Brownlee M, Vlassara H, Cerami A. Inhibition of heparin-catalyzed antithrombin III activity by non-enzymatic glycosylation: possible role in fibrin deposition in diabetes. Diabetes 1984;33:532–535.

    PubMed  CAS  Google Scholar 

  273. Ceriello A, Giugliano D, Quatraro A, et al. Daily rapid blood glucose variations may condition antithrombin biological activity but not its plasma concentration in insulin dependent diabetes: a possible role for labile non-enzymatic glycation. Diabetes Metab 1987;13:16–19.

    CAS  Google Scholar 

  274. Vukovich TC, Schernthaner G. Decreased protein C levels in patients with insulin-dependent type I diabetes mellitus. Diabetes 1986;35:617–619.

    PubMed  CAS  Google Scholar 

  275. Ananyeva NM, Kouiavskaia DV, Shima M, Saenko EL. Intrinsic pathway of blood coagulation contributes to thrombogenicity of atherosclerotic plaque. Blood 2002;99:4475–4485.

    PubMed  CAS  Google Scholar 

  276. Ridker PM, Vaughan DE, Stampfer MJ, Manson JE, Hennekens CH. Endogenous tissue-type activator and risk of myocardial infarction. Lancet 1993;341:1165–1168.

    PubMed  CAS  Google Scholar 

  277. Ridker PM, Hennekens CH, Stampfer MJ, Manson JE, Vaughan DE. Prospective study of endogenous tissue plasminogen activator and risk of stroke. Lancet 1994;343:940–943.

    PubMed  CAS  Google Scholar 

  278. Jansson JH, Olofsson BO, Nilsson TK. Predictive value of tissue plasminogen activator mass concentration on long-term mortality in patients with coronary artery disease. Circulation 1993;88:2030–2034.

    PubMed  CAS  Google Scholar 

  279. Garcia Frade LJ, de la Calle H, Torrado MC, Lara JI, Cuellar L, Garcia Avello A. Hypofibrinolysis associated with vasculopathy in non-insulin dependent diabetes mellitus. Thromb Res 1990;59:51–59.

    PubMed  CAS  Google Scholar 

  280. Huber K, Jorg M, Probst P, et al. A decrease in plasminogen activator inhibitor-1 activity after successful percutaneous transluminal coronary angioplasty is associated with a significantly reduced risk for coronary restenosis. Throm Haemos 1992;67:209–213.

    CAS  Google Scholar 

  281. Gray RP, Patterson DLH, Yudkin JS. Plasminogen activator inhibitor activity in diabetic and nondiabetic survivors of myocardial infarction. Arteriosclerosis 1993;13:415–420.

    CAS  Google Scholar 

  282. Gruden G, Cavallo-Perin P, Bazzan M, Stella S, Vuolo A, Pagano G. PAI-1 and factor VII activity are higher in IDDM patients with microalbuminuria. Diabetes 1994;43:426–429.

    PubMed  CAS  Google Scholar 

  283. Grant PJ, Ruegg M, Medcalf RL. Basal expression and insulin-mediated induction of PAI-1 mRNA in Hep G2 cells. Fibrinolysis 1991;5:81–86.

    Google Scholar 

  284. Chen Y, Sobel BE, Schneider DJ. Effect of fatty acid chain length and thioesterification on the augmentation of expression of plasminogen activator inhibitor-1. Nutrition, Metabolism, and Cardiovascular Disease 2002;12:325–330.

    CAS  Google Scholar 

  285. Juhan-Vague I, Vague P, Poisson C, Aillaud MF, Mendez C, Collen D. Effect of 24 hours of normoglycemia on tissue-type plasminogen activator plasma levels in insulin-dependent diabetes, Thromb Haemost 1984;51:97–98.

    PubMed  CAS  Google Scholar 

  286. Vague P. Insulin and the fibrinolytic system. IDF Bull 1991;36:15–17.

    Google Scholar 

  287. Cefalu WT, Carlson HE, Schneider DJ, Sobel BE. Effect of combination glipizide GITS/metformin on fibrinolytic and metabolic parameters in poorly controlled, type 2 diabetic subjects. Diabetes Care 2002;25:2123–2128.

    PubMed  CAS  Google Scholar 

  288. Booyse FM, Bruce R, Gianturco SH, Bradley WA. Normal but not hypertriglyceridemic very low-density lipoprotein induces rapid release of tissue plasminogen activator from cultured human umbilical vein endothelial cells. Semin Thromb Hemost 1988;14:175–179.

    PubMed  CAS  Google Scholar 

  289. Stiko-Rahm A, Wiman B, Hamsten A, Nilsson J. Secretion of plasminogen activator inhibitor 1 from cultured human umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis 1990;10:1067–1073.

    PubMed  CAS  Google Scholar 

  290. Brommer EJ, Gevers Leuven JA, Barrett-Bergshoeff MM. Response of fibrinolytic activity and factor VIII-related antigen to stimulation with desmopressin in hyperlipoproteinemia. J Lab Clin Med 1982;100:105–114.

    PubMed  CAS  Google Scholar 

  291. Hancock MA, Boffa MB, Marcovina SM. Inhibition of plasminogen activation by lipoprotein (a): critical domains in apolipoprotein (a) and mechanisms of inhibition on fibrin and degraded fibrin surfaces. J Biol Chem 2003;287:23260–269.

    Google Scholar 

  292. Kang C, Dominguez M, Loyau S. Lp(a) particles mold fibrin-binding properties of apo(a) in size-dependent manner: a study with different length recombinant apo(a), native Lp(a) and monoclonal antibody. Arterioscler Thromb Vasc Biol 2002;22:1232–38.

    PubMed  CAS  Google Scholar 

  293. Loskutoff DJ, Sawdey M, Mimuro J. Type 2 plasminogen activator inhibitor. In: Coller S, (ed). Progress in Hemostatis and Thrombosis. WB Saunders: Philadelphia, PA, 1989, pp. 87–115.

    Google Scholar 

  294. Juhan-Vague I, Alessi MC. Regulation of fibrinolysis in the development of atherothrombosis: role of adipose tissue. Thromb Haemost 1999;82,832–836.

    PubMed  CAS  Google Scholar 

  295. Alessi MC, Peiretti F, Morange P, Henry M, Nalbone G, Juhan-Vague I. Production of plasminogen activator inhibitor 1 by human adipose tissue. Possible link between visceral fat accumulation and vascular disease. Diabetes 1997;46,860–867.

    PubMed  CAS  Google Scholar 

  296. Sakamoto TJ, Woodcock-Mitchell K, Marutsuka JJ, Mitchell BE, Sobel, Fujii S. TNF-alpha and insulin. Alone and synergistically, induce plasminogen activator inhibitor-1 expression in adipocytes. Am J Physiol 1999;276:C1391–C1397.

    PubMed  CAS  Google Scholar 

  297. Okada HJ, Woodcock-Mitchell J, Mitchell T, et al. Induction of plasminogen activator inhibitor type 1 and type 1 collagen expression in rat cardiac microvascular endothelial cells by interleukin-1 and its dependence on oxygen-centered free radicals. Circulation 1998;97:2175–2182.

    PubMed  CAS  Google Scholar 

  298. Feener EP, Northup JM, Aiello LP, King GL. Angiotensin II induces plasminogen activator inhibitor-1 and-2 expression in vascular endothelial and smooth muscle cells. J Clin Invest 1995;95:1353–1362.

    PubMed  CAS  Google Scholar 

  299. Zaman AKMT, Fujii S, Sawa H, et al. Angiotensin-converting enzyme inhibition attenuates hypofibrinolysis and reduces cardiac perivascular fibrosis in genetically obese diabetic mice. Circulation 2001;103:3123–3128.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lopes-Virella, M.F., Virella, G. (2005). Diabetes and Atherosclerosis. In: Johnstone, M.T., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-908-7:225

Download citation

  • DOI: https://doi.org/10.1385/1-59259-908-7:225

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-413-5

  • Online ISBN: 978-1-59259-908-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics