Skip to main content

Strain and Culture Conditions Improvement for β-Carotene Production With Mucor

  • Protocol
Microbial Processes and Products

Part of the book series: Methods in Biotechnology ((MIBT,volume 18))

Abstract

Carotenoids are chemical compounds that are in an increasing demand in the market because of their applications in the food, feed, cosmetics, and pharmaceutical industries. To date, most of the β-carotene is manufactured by chemical processes, but because it is used as feed and food additives, the interest is growing for β-carotene of biological origin. Several fungal species, particularly some included in the Mucorales, have been used to develop fermentation processes for the production of β-carotene. In this chapter, we describe an approach to obtain Mucor circinelloides strains that could be useful in the industrial production of carotenoids and that, for commercial interests, specifically avoids the use of molecular genetic engineering. The method relies on classical genetic techniques to isolate and characterize β-carotene overproducing mutants and to build up strains that better fit the industrial production. M. circinelloides is a dimorphic fungus that grows either as yeast cells or in a mycelial form. This feature can be used to further develop strains with a better industrial potential by isolating monomorphic (yeastlike) mutants or by controlling and modifying the morphology of the organism during batch cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Britton, G., Liaaen-Jensen, S., and Pfander, H. P. (eds.) (1995) Carotenoids, Vols I and II, Birkhäuser, Basel.

    Google Scholar 

  2. Britton, G., Liaaen-Jensen, S., and Pfander, H. P. (eds.) (1998) Carotenoids: Biosynthesis and Metabolism, Vol. III. Birkhäuser, Basel.

    Google Scholar 

  3. Olson, J. A. (1993) Vitamin A and carotenoids as antioxidants in a physiological context. J. Nutr. Sci. Vitaminol. 39, S57–S65.

    PubMed  CAS  Google Scholar 

  4. Olson, J. A. (1993) Molecular actions of carotenoids, in Carotenoids in Human Health (Cantfield, L. M., Krinsky, N. I., and Olson, J. A., eds.), Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp.156–166.

    Google Scholar 

  5. Chew, B. P. (1993) Role of carotenoids in the immune response. J. Dairy Sci. 76, 2804–2811.

    Article  PubMed  CAS  Google Scholar 

  6. Vainio, H. and Rautalahti, M. (1998) An international evaluation of the cancer preventive potential of carotenoids. Cancer Epidemiol. Biomarkers Prev. 7, 725–728.

    PubMed  CAS  Google Scholar 

  7. Goodwin, T. W. (ed.) (1980) The Biochemistry of Carotenoids, 2nd ed., Chapman & Hall, London.

    Google Scholar 

  8. Krinsky, N. I., Mathews-Roth, M. M., and Taylor, R. F. (eds.) (1989) Carotenoids: Chemistry and Biology. Plenum, New York.

    Google Scholar 

  9. Cerdá-Olmedo, E. (1989) Production of carotenoids with fungi, in Biotechnology of Vitamin, Growth Factor and Pigment Production (Vandamme, E. J., ed.), Elsevier Applied Science, London, pp. 27–42.

    Google Scholar 

  10. Sandmann, G. (1994) Carotenoid biosynthesis in microorganisms and plants. Eur. J. Biochem. 223, 7–24.

    Article  PubMed  CAS  Google Scholar 

  11. Armstrong, G. A. (1994) Eubacteria show their true colors: genetics of carotenoid pigment biosynthesis from microbes to plants. J. Bacteriol. 176, 4795–4802.

    PubMed  CAS  Google Scholar 

  12. Britton, G. (1995) Structure and properties of carotenoids in relation to function. FASEB J. 9, 1551–1558.

    PubMed  CAS  Google Scholar 

  13. Armstrong, G. A. (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu. Rev. Microbiol. 51, 629–659.

    Article  PubMed  CAS  Google Scholar 

  14. Cunningham, F. X., Jr. and Gantt, E. (1998) Genes and enzymes of carotenoids biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 557–583.

    Article  PubMed  CAS  Google Scholar 

  15. Sandmann, G. (2001) Carotenoid biosynthesis and biotechnological application. Arch. Biochem. Biophys. 385, 4–12.

    Article  PubMed  CAS  Google Scholar 

  16. Burkhardt, P. K., Beyer, P., Wünn, J., et al. (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J. 11,1071–1078.

    Article  PubMed  CAS  Google Scholar 

  17. Misawa, N. and Shimada, H. (1997) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59, 169–181.

    Article  PubMed  CAS  Google Scholar 

  18. Giovannucci, E. (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J. Natl. Cancer Inst. 17, 317–331.

    Google Scholar 

  19. Hirschberg, J. (1999) Production of high-value compounds: carotenoids and vitamin E. Curr. Opin. Biotechnol. 10, 186–191.

    Article  PubMed  CAS  Google Scholar 

  20. Todd Lorenz, R. and Cysewski, G. R. (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends. Biotechnol. 18,160–167.

    Article  Google Scholar 

  21. Eslava, A. P., Alvarez, M. I., and Cerdá-Olmedo, E. (1974) Regulation of carotene biosynthesis in Phycomyces by vitamin-A and beta-ionone. Eur. J. Biochem. 48, 617–623.

    Article  CAS  Google Scholar 

  22. Bejarano, E. R. and Cerdá-Olmedo, E. (1989) Inhibition of phytoene dehydrogenation and activation of carotenogenesis in Phycomyces. Phytochemistry 28, 1623–1626.

    Article  CAS  Google Scholar 

  23. Corrochano, L. M. and Cerdá-Olmedo, E. (1992) Sex, light and carotenes: the development of Phycomyces. Trends Genet. 8, 268–274.

    Article  PubMed  CAS  Google Scholar 

  24. Cerdá-Olmedo, E. and Corrochano, L. M. (1996) Photoregulation of fungal gene expression, in Light as an Energy Source and Information Carrier in Plant Physiology (Jennings, R. C., Zucchelli, G., Ghetti, F., and Colombetti, G., eds.), Plenum, New York, pp. 285–292.

    Google Scholar 

  25. Linden, H., Ballario, P., and Macino, G. (1997) Blue light regulation in Neurospora crassa. Fungal Genet. Biol. 22, 141–150.

    Article  PubMed  CAS  Google Scholar 

  26. Ruiz-Hidalgo, M. J., Benito, E. P., Sandmann, G., and Eslava, A. P. (1997) The phytoene dehydrogenase gene of Phycomyces: regulation of its expression by blue light and vitamin A. Mol. Gen. Genet. 253, 734–744.

    Article  PubMed  CAS  Google Scholar 

  27. Velayos, A., Blasco, J. L., Alvarez, M. I., Iturriaga, E. A., and Eslava, A. P. (2000) Blue-light regulation of phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta 210, 938–946.

    Article  PubMed  CAS  Google Scholar 

  28. Ciegler, A. (1965) Microbial carotenogenesis. Adv. Appl. Microbiol. 7, 1–34.

    Article  PubMed  CAS  Google Scholar 

  29. Ninet, L. and Renaut, J. (1979) Carotenoids, in Microbial Technology 2nd ed. (Peppler, H. J. and Perlman, D., eds.), Academic, New York, pp. 529–544.

    Google Scholar 

  30. Filkenstein, M., Huang, C. C., Byng, G. S., Tsau, B. R., and Leach, J. (1993) Method for producing beta-carotene using a fungal mated culture. European Patent Office WO93/20183.

    Google Scholar 

  31. Murillo, F. J., Calderón, I. L., López-DÍaz, I., and Cerdá-Olmedo, E. (1982) β-Carotene producing strains of the fungus Phycomyces blakesleeanus. US Patent Office 4,318,987.

    Google Scholar 

  32. Mehta, B. J. and Cerdá-Olmedo, E. (2001) Intersexual partial diploids of Phycomyces. Genetics 158, 635–641.

    PubMed  CAS  Google Scholar 

  33. Okagbue, R. N. and Lewis, M. J. (1985) Influence of mixed culture conditions on yeast-wall hydrolytic activity of Bacillus circulans WL-12 and on the extractability of astaxanthin from the yeast Phaffia rhodozyma. J. Appl. Bacteriol. 59, 243–255.

    CAS  Google Scholar 

  34. Iturriaga, E. A., Velayos, A., and Eslava, A. P. (2000) The structure and function of the genes involved in the biosynthesis of carotenoids in the Mucorales. Biotechnol. Bioprocess. Eng. 5, 263–274.

    Article  CAS  Google Scholar 

  35. Velayos, A, Eslava, A. P., and Iturriaga, E. A. (2000) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur. J. Biochem. 267, 5509–5519.

    Article  PubMed  CAS  Google Scholar 

  36. Velayos, A., Papp, T., Aguilar-Elena, R., et al. (2003) Expression of the carG gene, encoding geranylgeranyl pyrophosphate synthase, is up-regulated by blue light in Mucorcircinelloides. Curr. Genet. 43, 112–120.

    PubMed  CAS  Google Scholar 

  37. Navarro, E., Ruiz-Pérez, V. L., and Torres-MartÍnez, S. (2000) Overexpression of the crgA gene abolishes light requirement for carotenoid biosynthesis in Mucor circinelloides. Eur. J. Biochem. 267, 800–807.

    Article  PubMed  CAS  Google Scholar 

  38. Orlowski, M. (1994) Yeast/mycelial dimorphism, in The Mycota. I. Growth, Differentiation and Sexuality (Wessels, J. G. H. and Meinhardt, F., eds.), SpringerVerlag, Berlin, pp. 143–162.

    Google Scholar 

  39. McIntyre, M., Breum, J., Arnau, J., and Nielsen, J. (2002) Growth physiology and dimorphism of Mucor circinelloides during submerged batch cultivation. Appl. Microbiol. Biotechnol. 58, 495–502.

    Article  PubMed  CAS  Google Scholar 

  40. Cerdá-Olmedo, E. and Avalos, J. (1994) Oleaginous fungi: carotene-rich oil from Phycomyces. Prog. LipidRes. 33, 185–192.

    Article  Google Scholar 

  41. Stredanská, S. and Sajbidor, J. (1992) Oligounsaturated fatty acid production by selected strains of micromycetes. Folia Microbiol. (Praha) 37, 357–359.

    Article  Google Scholar 

  42. Madyastha, K. M. (1996) Novel microbial transformations of steroids. Adv. Exp. Med. Biol. 405, 259–270.

    PubMed  CAS  Google Scholar 

  43. Mogollón, L., RodrÍguez, R., Larrota, W., RamÍrez, N., and Torres, R. (1998) Biosorption of nickel using filamentous fungi. Appl. Biochem. Biotechnol. 70-72, 593–601.

    Article  Google Scholar 

  44. Deken, R. H. de (1966) The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44, 149–156.

    PubMed  Google Scholar 

  45. Lee, P. C., Momen, A. Z. R., Mijts, B. N., and Schmidt-Dannert, C. (2003) Biosynthesis of structurally novel carotenoids E. coli. Chem. Biol. 10, 453–462.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

A., E., Papp, T., Breum, J., Arnau, J., P., A. (2005). Strain and Culture Conditions Improvement for β-Carotene Production With Mucor . In: Barredo, JL. (eds) Microbial Processes and Products. Methods in Biotechnology, vol 18. Humana Press. https://doi.org/10.1385/1-59259-847-1:239

Download citation

  • DOI: https://doi.org/10.1385/1-59259-847-1:239

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-548-4

  • Online ISBN: 978-1-59259-847-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics