Skip to main content

DNA Double-Strand Break Damage and Repair Assessed by Pulsed-Field Gel Electrophoresis

  • Protocol
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 291))

Abstract

This assay quantifies the amount of DNA double-strand break (DSB) damage in attached cell populations embedded in agarose and assayed for migratory DNA using pulsed-field gel electrophoresis (PFGE) with ethidium bromide staining. The assay can measure pre-existing damage, as well as induction of DSB by chemical (e.g., bleomycin), physical (e.g., X-irradiation), or biological (e.g., restriction enzymes) agents. By incubating the cells under physiological conditions prior to processing, the cells are allowed to repair DSB, primarily via the process of nonhomologous end joining. The amount of repair, corresponding to the repair capacity of the treated cells, is then quantified by determining the ratio of the fractions of activity released in these repaired lanes in comparison with the total amount of DNA fragmentation following determination of a optimal exposure for maximum initial fragmentation. Repair kinetics can also be analyzed through a time-course regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L. (1988) A simple technique for quantification of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191.

    Article  CAS  PubMed  Google Scholar 

  2. Speit, G. and Hartmann, A. (1995) The contribution of excision repair to the DNA-effects seen in the alkaline single cell gel test (comet assay). Mutagenesis 10, 555–559.

    Article  CAS  PubMed  Google Scholar 

  3. DiBiase, S. J., Guan, J., Curran, W. J. Jr., and Iliakis, G. (1999) Repair of DNA double-strand breaks and radiosensitivity to killing in an isogenic group of p53 mutant cell lines. Int. J. Radiat. Oncol. Biol. Phys. 45, 743–751.

    Article  CAS  PubMed  Google Scholar 

  4. Pfeiffer, P. and Vielmetter, W. (1988) Joining of nonhomologous DNA double strand breaks in vitro. Nucleic Acids Res. 16, 907–924.

    Article  CAS  PubMed  Google Scholar 

  5. Lehman, C. W., Clemens, M., Worthylake, D. K., Trautman, J. K., and Carroll, D. (1993) Homologous and illegitimate recombination in developing Xenopus oocytes and eggs. Mol. Cell Biol. 13, 6897–6906.

    CAS  PubMed  Google Scholar 

  6. Feldmann, E., Schmiemann, V., Goeddecke, W., Reichenberger, S., and Pfeiffer, P. (2000) DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res. 28, 2585–2596.

    Article  CAS  PubMed  Google Scholar 

  7. North, P., Ganesh, A., and Tacker, J. (1990) The rejoining of double-strand breaks in DNA by human cell extracts. Nucleic Acids Res. 18, 6205–6210.

    Article  CAS  PubMed  Google Scholar 

  8. Ganesh, A., North, P., and Tacker, J. (1993) Repair and misrepair of site-specific DNA double-strand breaks by human cell extracts. Mutat. Res. 299, 251–259.

    Article  CAS  PubMed  Google Scholar 

  9. Boe, S. O., Sodroski, J., Helland, D. E., and Farnet, C. M. (1995) DNA end-joining in extracts from human cells. Biochem. Biophys. Res. Commun. 215, 987–993.

    Article  CAS  PubMed  Google Scholar 

  10. Khanna, K. K. and Jackson, S. P. (2002) DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27, 247–254.

    Article  Google Scholar 

  11. Weaver, D. T. (1995) What to do at an end: DNA double-strand-break repair. Trends Genet. 10, 388–392.

    Article  Google Scholar 

  12. Valerie, K. and Povirk, L. F. (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22, 5792–5812.

    Article  CAS  PubMed  Google Scholar 

  13. Rathmell, W. K. and Chu, G. (1998) Mechanisms for DNA double-strand break repair in eukaryotes, in DNA Damage and Repair, vol. II: DNA Repair in Higher Eukaryotes (Nickoloff, J. A. and Hoekstra, M. F., eds.), Humana, Totowa, NJ, pp. 299–316.

    Google Scholar 

  14. Cheong, N., Perrault, A. R., and Iliakis, G. (1998) In vitro rejoining of DNA double-strand-breaks: a comparison of genomic DNA with plasmid DNA-based assays. Int. J. Radiat. Biol. 73, 481–493.

    Article  CAS  PubMed  Google Scholar 

  15. Iliakis, G., Metzger, L., Denko, N., and Stamato, T. D. (1991) Detection of DNA double-strand breaks in synchronous cultures of CHO cells by means of asymmetric field inversion gel electrophoresis. Int. J. Radiat. Biol. 59, 321–341.

    Article  CAS  PubMed  Google Scholar 

  16. DiBiase, S. J., Zeng, Z. C., Chen, R., Hyslop, T., Curran, W. J., and Iliakis, G. (2000) DNA-dependent protein kinase stimulates an independent active, nonhomologous, endjoining apparatus. Cancer Res. 60, 1245–1253.

    CAS  PubMed  Google Scholar 

  17. Nachsberger, P. R., Li, W. H., Guo, M., et al. (1999) Rejoining of DNA double strand breaks in Ku80-deficient mouse fibroblasts. Radiat. Res. 151, 398–407.

    Article  Google Scholar 

  18. Howlett, N. G., Taniguchi, T., Olson, S., et al. (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297, 606–609.

    Article  CAS  PubMed  Google Scholar 

  19. D’Andrea, A. D. and Grompe, M. (2003) The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer 3, 23–34.

    Article  PubMed  Google Scholar 

  20. Xia, F., Taghian, D. G., Defrank, J. S., et al. (2001) Deficiency of human BRCA2 leads to impared homologous recombination but maintains normal non-homologous end joining. Proc. Natl. Acad. Sci. USA 98, 8644–8649.

    Article  CAS  PubMed  Google Scholar 

  21. Olive, P. L. (1989) Cell proliferation as a requirement for development of contact effect in Chinese hamster V79 spheroids. Radiat. Res. 117, 79–92.

    Article  CAS  PubMed  Google Scholar 

  22. Pastwa, E., Neumann, R. D., Mezhevaya, K., and Winters, T. A. (2003) Repair of radiation-induced DNA double-strand breaks is dependent upon radiation quality and the structural complexity of double-strand breaks. Radiat. Res. 159, 251–261.

    Article  CAS  PubMed  Google Scholar 

  23. Kinashi, Y., Okayasu, R., Iliakis, G., Nagasawa, H., and Little, J. B. (1995) Induction of DNA double-strand breaks by restriction enzymes in X-ray-senstive mutant Chinese hamster ovary cells measured by pulse-gel electrophoresis. Radiat. Res. 141, 153–159.

    Article  CAS  PubMed  Google Scholar 

  24. Olive, P. L. (1998) Molecular approaches for detection of DNA damage, in DNA Damage and Repair, vol. II: DNA Repair in Higher Eukaryotes (Nickoloff, J. A. and Hoekstra, M. F., eds.), Humana, Totowa, NJ, pp. 539–557.

    Google Scholar 

  25. Blocher, D. and Pohlit, W. (1982) DNA double strand breaks in Ehrlich ascites tumors cells at low doses of X-rays. II. Can cell death be attributed to double strand breaks? Int. J. Radiat. Biol. 42, 329–338.

    Article  CAS  Google Scholar 

  26. Loucas, B. D. and Geard, C. R. (1994) Kinetics of chromosome rejoining in normal human fibroblasts after exposure to low-and high-LET radiation. Radiat. Res. 138, 352–360.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Joshi, N., Grant, S.G. (2005). DNA Double-Strand Break Damage and Repair Assessed by Pulsed-Field Gel Electrophoresis. In: Keohavong, P., Grant, S.G. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology™, vol 291. Humana Press. https://doi.org/10.1385/1-59259-840-4:121

Download citation

  • DOI: https://doi.org/10.1385/1-59259-840-4:121

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-084-7

  • Online ISBN: 978-1-59259-840-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics