Skip to main content

Platelet Aggregation

Turbidimetric Measurements

  • Protocol
Book cover Platelets and Megakaryocytes

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 272))

Abstract

Of all the functional responses of platelets, aggregation is probably the mostly widely investigated. This is for two main reasons. First, the pathophysiological processes of most interest to medical scientists studying platelets are hemostasis and arterial thrombosis: the formation of hemostatic plugs and occlusive thrombi. As both of these events directly involve the clumping of platelets, aggregation presents itself to us as a functional response of singular clinical relevance. This is reflected in the fact that antiplatelet and antithrombotic drugs are characterized essentially as antiaggregatory agents. Whether this emphasis on aggregation is justified is a subject for another occasion; however, the central role of aggregometry in the academic study of platelet function and the pharmaceutical development of novel therapeutic agents is undeniable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Born, G. V. R. (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194, 927–929.

    Article  PubMed  CAS  Google Scholar 

  2. Born, G. V. R. and Cross, M. J. (1963) The aggregation of blood platelets. J. Physiol. 168, 178–195.

    PubMed  CAS  Google Scholar 

  3. Born, G. V. and Hume, M. (1967) Effects of the numbers and sizes of platelet aggregates on the optical density of plasma. Nature 215, 1027–1029.

    Article  PubMed  CAS  Google Scholar 

  4. Latimer, P., Born, G. V., and Michal, F. (1977) Application of light-scattering theory to the optical effects associated with the morphology of blood platelets. Arch. Biochem. Biophys. 180, 151–159.

    Article  PubMed  CAS  Google Scholar 

  5. Thompson, N. T., Scrutton, M. C., and Wallis, R. B. (1986) Particle volume changes associated with light transmittance changes in the platelet aggregometer: dependence upon aggregating agent and effectiveness of stimulus. Thromb. Res. 41, 615–626.

    Article  PubMed  CAS  Google Scholar 

  6. Latimer, P. (1983) Blood platelet aggregometer: predicted effects of aggregation, photometer geometry, and multiple scattering. Applied Optics 22, 1136–1143.

    Article  PubMed  CAS  Google Scholar 

  7. Michal, F. and Born, G. V. (1971) Effect of the rapid shape change of platelets on the transmission and scattering of light through plasma. Nat. New Biol. 231, 220–222.

    PubMed  CAS  Google Scholar 

  8. Frojmovic, M. M. and Panjwani, R. (1975) Blood cell structure-function studies: light transmission and attenuation coefficients of suspensions of blood cells and model particles at rest and with stirring. J. Lab. Clin. Med. 86, 326–343.

    PubMed  CAS  Google Scholar 

  9. Patscheke, H., Dubler, D., Deranleau, D., and Luscher, E. F. (1984) Optical shape change analysis in stirred and unstirred human platelet suspensions. A comparison of aggregometric and stopped-flow turbidimetric measurements. Thromb. Res. 33, 341–353.

    Article  PubMed  CAS  Google Scholar 

  10. Hugues, J. (1971) What does the optical platelet aggregation test actually measure? Introductory remarks. Acta Med. Scand. Suppl. 525, 39–40.

    PubMed  CAS  Google Scholar 

  11. Milton, J. G. and Frojmovic, M. M. (1983) Turbidometric evaluations of platelet activation: relative contributions of measured shape change, volume, and early aggregation. J. Pharmacol. Methods 9, 101–115.

    Article  PubMed  CAS  Google Scholar 

  12. Jarvis, G. E., Atkinson, B. T., Frampton, J., and Watson, S. P. (2003) Thrombin-induced conversion of fibrinogen to fibrin results in rapid platelet trapping which is not dependent on platelet activation or GPIb. Br. J. Pharmacol. 138, 574–583.

    Article  PubMed  CAS  Google Scholar 

  13. Kitek, A. and Breddin, K. (1980) Optical density variations and microscopic observations in the evaluation of platelet shape change and microaggregate formation. Thromb. Haemost. 44, 154–158.

    PubMed  CAS  Google Scholar 

  14. Malinski, J. A. and Nelsestuen, G. L. (1986) Relationship of turbidity to the stages of platelet aggregation. Biochim. Biophys. Acta 882, 177–182.

    PubMed  CAS  Google Scholar 

  15. Frojmovic, M. M., Milton, J. G., and Duchastel, A. (1983) Microscopic measurements of platelet aggregation reveal a low ADP-dependent process distinct from turbidometrically measured aggregation. J. Lab. Clin. Med. 101, 964–976.

    PubMed  CAS  Google Scholar 

  16. Born, G. V. (1970) Observations on the change in shape of blood platelets brought about by adenosine diphosphate. J. Physiol. 209, 487–511.

    PubMed  CAS  Google Scholar 

  17. McLean, J. R. and Veloso, H. (1967) Change of shape without aggregation caused by ADP in rabbit platelets at low pH. Life Sci. 6, 1983–1986.

    Article  PubMed  CAS  Google Scholar 

  18. Maurer-Spurej, E. and Devine, D. V. (2001) Platelet aggregation is not initiated by platelet shape change. Lab. Invest. 81, 1517–1525.

    PubMed  CAS  Google Scholar 

  19. Leung, L. and Nachman, R. (1986) Molecular mechanisms of platelet aggregation. Annu. Rev. Med. 37, 179–186.

    Article  PubMed  CAS  Google Scholar 

  20. Zucker, M. B. and Nachmias, V. T. (1985) Platelet activation. Arteriosclerosis 5, 2–18.

    PubMed  CAS  Google Scholar 

  21. Howard, M. A. and Firkin, B. G. (1971) Ristocetin—a new tool in the investigation of platelet aggregation. Thromb. Diath. Haemorrh. 26, 362–369.

    PubMed  CAS  Google Scholar 

  22. Cooper, H. A., Mason, R. G., and Brinkhous, K. M. (1976) The platelet: membrane and surface reactions. Annu. Rev. Physiol. 38, 501–535.

    Article  PubMed  CAS  Google Scholar 

  23. Chao, F. C., Tullis, J. L., Conneely, G. S., and Lawler, J. W. (1976) Aggregation of platelets and inert particles induced by thrombin. Thromb. Haemost. 35, 717–736.

    PubMed  CAS  Google Scholar 

  24. Mustard, J. F., Perry, D. W., Kinlough-Rathbone, R. L., and Packham, M. A. (1975) Factors responsible for ADP-induced release reaction of human platelets. Am. J. Physiol. 228, 1757–1765.

    PubMed  CAS  Google Scholar 

  25. Jarvis, G. E., Humphries, R. G., Robertson, M. J., and Leff, P. (2000) ADP can induce aggregation of human platelets via both P2Y1 and P2T receptors. Br. J. Pharmacol. 129, 275–282.

    Article  PubMed  CAS  Google Scholar 

  26. Harrison, M. J., Emmons, P. R., and Mitchell, J. R. (1967) The variability of human platelet aggregation. J. Atheroscler. Res. 7, 197–205.

    Article  PubMed  CAS  Google Scholar 

  27. Tiffany, M. L. (1983) Technical considerations for platelet aggregation and related problems. Crit. Rev. Clin. Lab. Sci. 19, 27–69.

    Article  PubMed  CAS  Google Scholar 

  28. Taylor, R. R., Sturm, M., Vandongen, R., Strophair, J., and Beilin, L. J. (1987) Whole blood platelet aggregation is not affected by cigarette smoking but is sex-related. Clin. Exp. Pharmacol. Physiol. 14, 665–671.

    Article  PubMed  CAS  Google Scholar 

  29. Fusegawa, Y., Goto, S., Handa, S., Kawada, T., and Ando, Y. (1999) Platelet spontaneous aggregation in platelet-rich plasma is increased in habitual smokers. Thromb. Res. 93, 271–278.

    Article  PubMed  CAS  Google Scholar 

  30. Torres Duarte, A. P., Dong, Q. S., Young, J., Abi-Younes, S., and Myers, A. K. (1995) Inhibition of platelet aggregation in whole blood by alcohol. Thromb. Res. 78, 107–115.

    Google Scholar 

  31. Piret, A., Niset, G., Depiesse, E., Wyns, W., Boeynaems, J. M., Poortmans, J., et al. (1990) Increased platelet aggregability and prostacyclin biosynthesis induced by intense physical exercise. Thromb. Res. 57, 685–695.

    Article  PubMed  CAS  Google Scholar 

  32. Davis, R. B., Boyd, D. G., McKinney, M. E., and Jones, C. C. (1990) Effects of exercise and exercise conditioning on blood platelet function. Med. Sci. Sports Exerc. 22, 49–53.

    PubMed  CAS  Google Scholar 

  33. Rossi, E. C. and Louis, G. (1975) A time-dependent increase in the responsiveness of platelet-rich plasma to epinephrine. J. Lab. Clin. Med. 85, 300–306.

    PubMed  CAS  Google Scholar 

  34. Taylor, R. R., Strophair, J., Sturm, M., Vandongen, R., and Beilin, L. J. (1988) Time dependence of whole blood aggregation in response to platelet activating factor (PAF). Thromb. Haemost. 59, 162–163.

    PubMed  CAS  Google Scholar 

  35. Coller, B. S., Franza, B. R., Jr., and Gralnick, H. R. (1976) The pH dependence of quantitative ristocetin-induced platelet aggregation: theoretical and practical implications—a new device for maintenance of platelet-rich plasma pH. Blood 47, 841–854.

    PubMed  CAS  Google Scholar 

  36. Kinlough-Rathbone, R. L., Mustard, J. F., Packham, M. A., Perry, D. W., Reimers, H. J., and Cazenave, J. P. (1977) Properties of washed human platelets. Thromb. Haemost. 37, 291–308.

    PubMed  CAS  Google Scholar 

  37. Humphries, R. G., Tomlinson, W., Ingall, A. H., Cage, P. A., and Leff, P. (1994) FPL 66096: a novel, highly potent and selective antagonist at human platelet P2T-purinoceptors. Br. J. Pharmacol. 113, 1057–1063.

    PubMed  CAS  Google Scholar 

  38. Gear, A. R. (1982) Rapid reactions of platelets studied by a quenched-flow approach: aggregation kinetics. J. Lab. Clin. Med. 100, 866–886.

    PubMed  CAS  Google Scholar 

  39. Watson, S. P., Poole, A., and Asselin, J. (1995) Ethylene glycol bis(beta-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) and the tyrphostin ST271 inhibit phospholipase C in human platelets by preventing Ca2+ entry. Mol. Pharmacol. 47, 823–830.

    PubMed  CAS  Google Scholar 

  40. Cazenave, J. P., Hemmendinger, S., Beretz, A., Sutter-Bay, A., and Launay, J. (1983) Platelet aggregation: a tool for clinical investigation and pharmacological study. Methodology. Ann. Biol. Clin. (Paris) 41, 167–179.

    CAS  Google Scholar 

  41. Gachet, C. (2001) ADP receptors of platelets and their inhibition. Thromb. Haemost. 86, 222–232.

    PubMed  CAS  Google Scholar 

  42. Maurer-Spurej, E., Pfeiler, G., Maurer, N., Lindner, H., Glatter, O., and Devine, D. V. (2001) Room temperature activates human blood platelets. Lab. Invest. 81, 581–592.

    PubMed  CAS  Google Scholar 

  43. Gear, A. R. (1981) Preaggregation reactions of platelets. Blood 58, 477–490.

    PubMed  CAS  Google Scholar 

  44. Salmon, D. M. (1996) Optimisation of platelet aggregometry utilising micotitreplate technology and integrated software. Thromb. Res. 84, 213–216.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Jarvis, G.E. (2004). Platelet Aggregation. In: Gibbins, J.M., Mahaut-Smith, M.P. (eds) Platelets and Megakaryocytes. Methods In Molecular Biology™, vol 272. Humana Press. https://doi.org/10.1385/1-59259-782-3:065

Download citation

  • DOI: https://doi.org/10.1385/1-59259-782-3:065

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-101-1

  • Online ISBN: 978-1-59259-782-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics