Skip to main content

RNA Interference

Historical Overview and Significance

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 265))

Abstract

In the early 1990s, attempts to manipulate gene expression by researchers working in three different fields resulted in unanticipated gene silencing. Rather than ignoring such results, these researchers went on to document and further investigate the nature of such silencing, which was named “co-suppression” in plants, “quelling” in fungi, and “RNA interference” (RNAi) in nematodes. By the late 1990s, it was discovered that silencing could be initiated in this diverse set of organisms by exposing cells to double-stranded RNA (dsRNA), which directed the destruction of mRNAs containing similar sequences. Soon afterward, such dsRNA-mediated silencing was employed as a reverse genetic technique to analyze the functions of specific genes in a broad variety of organisms. Biochemical and genetic studies designed to uncover the components of the RNA silencing machinery identified a common core of proteins that serve to amplify the interfering RNA signal and direct endonucleolytic cleavage of target RNAs. A subset of silencing events may also direct DNA methylation of targeted genes. RNA silencing is thought to have evolved as a defense mechanism to suppress viral replication and transposon mobilization. However, additional functions involving the RNAi machinery have been uncovered, including posttranscriptional regulation of endogenous genes, and maintenance of structure and function of heterochromatin. Whereas many researchers have focused on understanding the natural biological functions of RNA silencing, others are testing its utility in antiviral and cancer therapies and in other biotechnological and biomedical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kohler, R. (1994) Lords of the Fly: Drosophila Genetics and the Experimental Life. University of Chicago Press, Chicago.

    Google Scholar 

  2. Izant, J. G. and Weintraub, H. (1984) Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 36, 1007–1015.

    Article  PubMed  CAS  Google Scholar 

  3. Rosenberg, U. B., Preiss, A., Seifert, E., Jackle, H., and Knipple, D. C. (1985) Production of phenocopies by Kruppel antisense RNA injection into Drosophila embryos. Nature 313, 703–704.

    Article  PubMed  CAS  Google Scholar 

  4. Harland, R. and Weintraub, H. (1985) Translation of mRNA injected into Xenopus oocytes is specifically inhibited by antisense RNA. J. Cell Biol. 101, 1094–1099.

    Article  PubMed  CAS  Google Scholar 

  5. Melton, D. A. (1985) Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc. Natl. Acad. Sci. USA 82, 144–148.

    Article  PubMed  CAS  Google Scholar 

  6. Fire, A., Albertson, D., Harrison, S. W., and Moerman, D. G. (1991) Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 113, 503–514.

    PubMed  CAS  Google Scholar 

  7. Guo, S. and Kemphues, K. J. (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620.

    Article  PubMed  CAS  Google Scholar 

  8. Rocheleau, C. E., Downs, W. D., Lin, R., Wittmann, C., Bei, Y., Cha, Y. H., Ali, M., Priess, J. R., and Mello, C. C. (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716.

    Article  PubMed  CAS  Google Scholar 

  9. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  10. Montgomery, M. K., Xu, S., and Fire, A. (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 15,502–15,507.

    Article  PubMed  CAS  Google Scholar 

  11. Simpson, V. J., Johnson, T. E., and Hammen, R. F. (1986) C. elegans DNA does not contain 5-methylcytosine at any time during development or aging. Nucl. Acids Res. 14, 6711–6717.

    Article  PubMed  CAS  Google Scholar 

  12. Napoli, C., Lemieux, C., and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.

    Article  PubMed  CAS  Google Scholar 

  13. Romano, N. and Macino, G. (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3353.

    Article  PubMed  CAS  Google Scholar 

  14. Cogoni, C., Irelan, J. T., Schumacher, M., Schmidhauser, T. J., Selker, E. U., and Macino, G. (1996) Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J. 15, 3153–3163.

    PubMed  CAS  Google Scholar 

  15. Matzke, M. A. and Matzke, A. (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol. 107, 679–685.

    PubMed  CAS  Google Scholar 

  16. Montgomery, M. K. and Fire, A. (1998) Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 14, 255–258.

    Article  PubMed  CAS  Google Scholar 

  17. Waterhouse, P. M., Graham, M. W., and Wang, M. B. (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 95, 13,959–13,964.

    Article  PubMed  CAS  Google Scholar 

  18. Jorgensen, R. A., Que, Q., and Stam, M. (1999) Do unintended antisense transcripts contribute to sense cosuppression in plants? Trends Genet. 15, 11, 12.

    Article  PubMed  CAS  Google Scholar 

  19. Williams, B. R. (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112–6120.

    Article  PubMed  CAS  Google Scholar 

  20. Wianny, F. and Zernicka-Goetz, M. (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75.

    Article  PubMed  CAS  Google Scholar 

  21. Oates, A. C., Bruce, A. E., and Ho, R. K. (2000) Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev. Biol. 224, 20–28.

    Article  PubMed  CAS  Google Scholar 

  22. Morel, J. B., Godon, C., Mourrain, P., Beclin, C., Boutet, S., Feuerbach, F., Proux, F., and Vaucheret, H. (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14, 629–639.

    Article  PubMed  CAS  Google Scholar 

  23. Marathe, R., Anandalakshmi, R., Smith, T. H., Pruss, G. J., and Vance, V. B. (2000) RNA viruses as inducers, suppressors and targets of post-transcriptional gene silencing. Plant Mol. Biol. 43, 295–306.

    Article  PubMed  CAS  Google Scholar 

  24. Hutvagner, G. and Zamore, P. D. (2002) RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev. 12, 225–232.

    Article  PubMed  CAS  Google Scholar 

  25. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  PubMed  CAS  Google Scholar 

  26. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  PubMed  CAS  Google Scholar 

  27. Zamore, P., Tuschl, T., Sharp, P., and Bartel, D. (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.

    Article  PubMed  CAS  Google Scholar 

  28. Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H., and Fire, A. (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476.

    Article  PubMed  CAS  Google Scholar 

  29. Tijsterman, M., Ketting, R. F., Okihara, K. L., Sijen, T., and Plasterk, R. H. (2002) RNA helicase MUT-14-dependent gene silencing triggered in C. elegans by short antisense RNAs. Science 295, 694–697.

    Article  PubMed  CAS  Google Scholar 

  30. Lipardi, C., Wei, Q., and Paterson, B. M. (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107, 297–307.

    Article  PubMed  CAS  Google Scholar 

  31. Schwarz, D. S., Hutvagner, G., Haley, B., and Zamore, P. D. (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537–548.

    Article  PubMed  CAS  Google Scholar 

  32. Stein, P., Svoboda, P., Anger, M., and Schultz, R. M. (2003) RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA 9, 187–192.

    Article  PubMed  CAS  Google Scholar 

  33. Roignant, J.-Y., Carre, C., Mugat, B., Szymczak, D., Lepesant, J.-A., and Antoinewski, C. (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9, 299–308.

    Article  PubMed  CAS  Google Scholar 

  34. Cogoni, C. and Macino, G. (1997) Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc. Natl. Acad. Sci. USA 94, 10,233–10,238.

    Article  PubMed  CAS  Google Scholar 

  35. Doench, J. G., Petersen C. P., and Sharp, P. A. (2003) siRNAs can function as miRNAs. Genes Dev. 17, 438–442.

    Article  PubMed  CAS  Google Scholar 

  36. Wassenegger, M. (2000) RNA-directed DNA methylation. Plant Mol. Biol. 43, 203–220.

    Article  PubMed  CAS  Google Scholar 

  37. Matzke, M. A., Matzke, A. J. M., Pruss, G., and Vance, V. B. (2001) RNA-based silencing strategies in plants. Curr. Opin. Genet. Dev. 11, 221–227.

    Article  PubMed  CAS  Google Scholar 

  38. Zilberman, D., Cao, X., and Jacobsen, S. E. (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299, 716–719.

    Article  PubMed  CAS  Google Scholar 

  39. Tang, G., Reinhart, B. J., Bartel, D. P., and Zamore, P. D. (2003) A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63.

    Article  PubMed  CAS  Google Scholar 

  40. Volpe, T. A., Kidner, C., Hall, I. M., Teng, G., Grewal, S. I., and Martienssen, R. A. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837.

    Article  PubMed  CAS  Google Scholar 

  41. Hall, I. M., Noma, K., and Grewal, S. I. S. (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc. Natl. Acad. Sci. USA 100, 193–198.

    Article  PubMed  CAS  Google Scholar 

  42. Mochizuki, K., Fine, N. A., Fujisawa, T., and Gorovsky, M. A. (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110, 689–699.

    Article  PubMed  CAS  Google Scholar 

  43. Kamath, R. S., Fraser, A. G., Dong, Y., et al. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237.

    Article  PubMed  CAS  Google Scholar 

  44. Ashrafi, K., Chang, F. Y., Watts, J. L., Fraser, A. G., Kamath, R. S., Ahringer, J., and Ruvkun, G. (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272.

    Article  PubMed  CAS  Google Scholar 

  45. Frankish, H. (2003) Consortium uses RNAi to uncover genes’ function. Lancet 361, 584.

    Article  PubMed  Google Scholar 

  46. Williams, N. S., Gaynor, R. B., Scoggin, S., Verma, U., Gokaslan, T., Simmang, C., Fleming, J., Tavana, D., Frenkel, E., and Becerra, C. (2003) Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference. Clin. Cancer Res. 9, 931–946.

    PubMed  CAS  Google Scholar 

  47. {mnSanchez Alvarado}, A. and Newmark, P.A. (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl. Acad. Sci. USA 96, 5049–5054.

    Google Scholar 

  48. Lohmann, J. U., Endl, I., and Bosch, T. C. (1999) Silencing of developmental genes in Hydra. Dev. Biol. 214, 211–214.

    Article  PubMed  CAS  Google Scholar 

  49. Baker, M. W. and Macagno, E. R. (2000) RNAi of the receptor tyrosine phosphatase HmLAR2 in a single cell of an intact leech embryo leads to growth-cone collapse. Curr. Biol. 10, 1071–1074.

    Article  PubMed  CAS  Google Scholar 

  50. Nakano, H., Amemiya, S., Shiokawa, K., and Taira, M. (2000) RNA interference for the organizer-specific gene Xlim-1 in Xenopus embryos. Biochem. Biophys. Res. Commun. 274, 434–439.

    Article  PubMed  CAS  Google Scholar 

  51. Brown, S. J., Mahaffey, J. P., Lorenzen, M. D., Denell, R. E., and Mahaffey, J. W. (1999) Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol. Dev. 1, 11–15.

    Article  PubMed  CAS  Google Scholar 

  52. Hughes, C. L. and Kaufman, T. C. (2000) RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127, 3683–3694.

    PubMed  CAS  Google Scholar 

  53. Schroder, R. (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422, 621–625.

    Article  PubMed  Google Scholar 

  54. Haag, E. S. and Kimble, J. (2000) Regulatory elements required for development of Caenorhabditis elegans hermaphrodites are conserved in the tra-2 homologue of C. remanei, a male/female sister species. Genetics 155, 105–116.

    PubMed  CAS  Google Scholar 

  55. Rudel, D. and Kimble, J. (2001) Conservation of glp-1 regulation and function in nematodes. Genetics 157, 639–654.

    PubMed  CAS  Google Scholar 

  56. Louvet-Vallee, S., Kolotuev, I., Podbilewicz, B., and Felix, M. A. (2003) Control of vulval competence and centering in the nematode Oscheius sp. 1 CEW1. Genetics 163, 133–146.

    PubMed  CAS  Google Scholar 

  57. Winston, W. M., Molodowitch, C., and Hunter, C. P. (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459.

    Article  PubMed  CAS  Google Scholar 

  58. Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., et al. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406.

    Article  PubMed  CAS  Google Scholar 

  59. Stewart, S. A., Dykxhoorn, D. M., Palliser, D., et al. (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501.

    Article  PubMed  CAS  Google Scholar 

  60. Kawasaki, H. and Taira, K. (2003) Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 31, 700–707.

    Article  PubMed  CAS  Google Scholar 

  61. Song, E., Lee, S. K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J., Shankar, P., and Lieberman, J. (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351.

    Article  PubMed  CAS  Google Scholar 

  62. Jiang, M. and Milner, J. (2002) Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21, 6041–6048.

    Article  PubMed  CAS  Google Scholar 

  63. Shlomai, A. and Shaul, Y. (2003) Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 37, 764–770.

    Article  PubMed  CAS  Google Scholar 

  64. Kapadia, S. B., Brideau-Andersen, A., and Chisari, F. V. (2003) Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl. Acad. Sci. USA 100, 2014–2018.

    Article  PubMed  CAS  Google Scholar 

  65. Jia, Q. and Sun, R. (2003) Inhibition of gamma herpesvirus replication by RNA interference. J. Virol. 77, 3301–3306.

    Article  PubMed  CAS  Google Scholar 

  66. Yamamoto, T., Omoto, S., Mizuguchi, M., Mizukami, H., Okuyama, H., Okada, N., Saksena, N. K., Brisibe, E. A., Otake, K., and Fuji, Y. R. (2002) Double-stranded nef RNA interferes with human immunodeficiency virus type 1 replication. Microbiol. Immunol. 46, 809–817.

    PubMed  CAS  Google Scholar 

  67. Lichner, Z., Silhavy, D., and Burgyan, J. (2003) Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. J. Gen. Virol. 84, 975–980.

    Article  PubMed  CAS  Google Scholar 

  68. Hamada, M., Ohtsuka, T., Kawaida, R., Koizumi, M., Morita, K., Furukawa, H., Imanishi, T., Miyagishi, M., and Taira, K. (2002) Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′-ends of siRNAs. Antisense Nucleic Acid Drug Dev. 12, 301–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Montgomery, M.K. (2004). RNA Interference. In: Gott, J.M. (eds) RNA Interference, Editing, and Modification. Methods in Molecular Biology, vol 265. Humana Press. https://doi.org/10.1385/1-59259-775-0:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-775-0:003

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-242-1

  • Online ISBN: 978-1-59259-775-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics