Skip to main content

Ligase Chain Reaction

  • Protocol
PCR Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 226))

  • 7432 Accesses

Abstract

The ligase chain reaction (LCR) is one of many techniques developed in recent years to detect specific nucleic acid sequences by amplification of nucleic acid targets. The LCR has been used for genotyping studies to detect tumors and identify the presence of specific genetic disorders such as sickle cell disease caused by known nucleotide changes that occur as a result of point mutations and has now become widely used in infectious disease detection, both in the diagnostic and research settings, primarily focusing on infections caused by microbes that have proven difficult to detect by traditional culture techniques. The LCR is now recognized as the method of choice for detection of urogenital infections due to Chlamydia trachomatis because of its greater sensitivity as compared to traditional cell culture or nonamplifed DNA probes or antigen-detection assays. Other uses of the LCR have also been reported (18). When used for detection of infectious diseases, amplification tests such as the LCR have the additional advantages in that they do not require viable organisms in a specimen, a single specimen can be used to detect multiple different pathogens, provided suitable primers are available, and easily obtained specimens such as urine can be used for diagnostic purposes, making screening of large numbers of persons practical, as well as facilitating research to better understand the epidemiology of specific diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *

    Abbott Diagnostics, which marketed the LCx Uriprobe that was FDA approved in 1994, is to be discontinued in June 2003 and after that time no commercial kits will use the LCR technology

References

  1. Barany, F. (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88, 189–193.

    Article  PubMed  CAS  Google Scholar 

  2. Jurinke, C., van den Boom, D., Jacob, A., Tang, K., Worl, R., and Koster, H. (1996) Analysis of ligase chain reaction products via matrix-assisted laser desorption/ionization time-of-fight-mass spectrometry. Anal. Biochem. 237, 174–181.

    Article  PubMed  CAS  Google Scholar 

  3. Luo, J., Bergstrom, D. E., and Barany, F. (1996) Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 24, 3071–3078.

    Article  PubMed  CAS  Google Scholar 

  4. Khanna, M., Park, P., Zirvi, M., Cao, W., Picon, A., Day, J., et al. (1999) Multiplex PCR/LDR for detection of K-ras mutations in primary colon tumors. Oncogene 18, 27–38.

    Article  PubMed  CAS  Google Scholar 

  5. Khanna, M., Cao, W., Zirvi, M., Paty, P., and Barany, F. (1999) Ligase detection reaction for identification of low abundance mutations. Clin. Biochem. 32, 287–290.

    Article  PubMed  CAS  Google Scholar 

  6. Zirvi, M., Bergstrom, D. E., Saurage, A. S., Hammer, R. P., and Barany, F. (1999) Improved fidelity of thermostable ligases for detection of microsatellite repeat sequences using nucleoside analogs. Nucleic Acids Res. 27, e41.

    Article  PubMed  CAS  Google Scholar 

  7. Day, D. J., Speiser, P. W., White, P. C., and Barany, F. (1995) Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction. Genomics 29, 152–162.

    Article  PubMed  CAS  Google Scholar 

  8. Reyes, A. A., Carrera, P., Cardillo, E., Ugozzoli, L., Lowery, J. D., Lin, C. I., et al. (1997) Ligase chain reaction assay for human mutations: the Sickle Cell by LCR assay. Clin. Chem. 43, 40–44.

    PubMed  CAS  Google Scholar 

  9. Besmer, P., Miller, R. J., Caruthers, M. H., Kumar, A., Minamoto, K., Van de Sande, J. H., et al. (1972) Studies on polynucleotides. CXVII. Hybridization of polydeoxynucleotides with tyrosine transfer RNA sequences to the r-strand of phi80psu+3 DNA. J. Mol. Biol. 72, 503–522.

    Article  PubMed  CAS  Google Scholar 

  10. Landegren, U., Kaiser, R., Sanders, J., and Hood, L. (1988) A ligase-mediated gene detection technique. Science 241, 1077–1080.

    Article  PubMed  CAS  Google Scholar 

  11. Alves, A. M. and Carr, F. J. (1988) Dot blot detection of point mutations with adjacently hybridising synthetic oligonucleotide probes. Nucleic Acids Res. 16, 8723.

    Article  PubMed  CAS  Google Scholar 

  12. Wu, D. Y. and Wallace, R. B. (1989) The ligation amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4, 560–569.

    Article  PubMed  CAS  Google Scholar 

  13. Morre, S. A., van Valkengoed, I. G., de Jong, A., Boeke, A. J., van Eijk, J. T., Meijer, C. J., and van den Brule, A. J. (1999) Mailed, home-obtained urine specimens: a reliable screening approach for detecting asymptomatic Chlamydia trachomatis infections. J. Clin. Microbiol. 37, 976–980.

    PubMed  CAS  Google Scholar 

  14. Chernesky, M. A., Jang, D., Sellors, J., Luinstra, K., Chong, S., Castriciano, S., and Mahony, J. B. (1997) Urinary inhibitors of polymerase chain reaction and ligase chain reaction and testing of multiple specimens may contribute to lower assay sensitivities for diagnosing Chlamydia trachomatis infected women. Mol. Cell Probes 11, 243–249.

    Article  PubMed  CAS  Google Scholar 

  15. Prchal, J. T. and Guan, Y. L. (1993) A novel clonality assay based on transcriptional analysis of the active X chromosome. Stem Cells 11(Suppl. 1), 62–65.

    Article  PubMed  Google Scholar 

  16. Marshall, R. L., Laffer, T. G., Cerney, M. B., Sustachek, J. C., Kratochvil, J. D., and Morgan, R. L. (1994) Detection of HCV RNA by the asymmetric gap ligase chain reaction. PCR Methods Appl. 4, 80–84.

    PubMed  CAS  Google Scholar 

  17. Lee, H. H., Chernesky, M. A., Schachter, J., Burczak, J. D., Andrews, W. W., Muldoon, S., et al. (1995) Diagnosis of Chlamydia trachomatis genitourinary infection in women by ligase chain reaction assay of urine. Lancet 345, 213–216.

    Article  PubMed  CAS  Google Scholar 

  18. Dille, B. J., Butzen, C. C., and Birkenmeyer, L. G. (1993) Amplification of Chlamydia trachomatis DNA by ligase chain reaction. J. Clin. Microbiol. 31, 729–731.

    PubMed  CAS  Google Scholar 

  19. Winn-Deen, E. S., Batt, C. A., and Wiedmann, M. (1993) Non-radioactive detection of Mycobacterium tuberculosis LCR products in a microtitre plate format. Mol. Cell Probes 7, 179–186.

    Article  PubMed  CAS  Google Scholar 

  20. Gaydos, C. A., Howell, M. R., Quinn, T. C., Gaydos, J. C., and McKee, K. T., Jr. (1998) Use of ligase chain reaction with urine versus cervical culture for detection of Chlamydia trachomatis in an asymptomatic military population of pregnant and nonpregnant females attending Papanicolaou smear clinics. J. Clin. Microbiol. 36, 1300–1304.

    PubMed  CAS  Google Scholar 

  21. Berg, E. S., Anestad, G., Moi, H., Storvold, G., and Skaug, K. (1997) False-negative results of a ligase chain reaction assay to detect Chlamydia trachomatis due to inhibitors in urine. Eur. J. Clin. Microbiol. Infect. Dis. 16, 727–731.

    Article  PubMed  CAS  Google Scholar 

  22. Leckie, G. W., Erickson, D. D., He, Q., Facey, I. E., Lin, B. C., Cao, J., and Halaka, F. G. (1998) Method for reduction of inhibition in a Mycobacterium tuberculosis-specific ligase chain reaction DNA amplification assay. J. Clin. Microbiol. 36, 764–767.

    PubMed  CAS  Google Scholar 

  23. Buimer, M., van Doornum, G. J., Ching, S., Peerbooms, P. G., Plier, P. K., Ram, D., and Lee, H. H. (1996) Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by ligase chain reaction-based assays with clinical specimens from various sites: implications for diagnostic testing and screening. J. Clin. Microbiol. 34, 2395–2400.

    PubMed  CAS  Google Scholar 

  24. Stary, A. (1999) Correct samples for diagnostic tests in sexually transmitted diseases: which sample for which test? FEMS Immunol Med Microbiol 24, 455–459.

    PubMed  CAS  Google Scholar 

  25. Stary, A., Najim, B., and Lee, H. H. (1997) Vulval swabs as alternative specimens for ligase chain reaction detection of genital chlamydial infection in women. J. Clin. Microbiol. 35, 836–838.

    PubMed  CAS  Google Scholar 

  26. Schepetiuk, S., Kok, T., Martin, L., Waddell, R., and Higgins, G. (1997) Detection of Chlamydia trachomatis in urine samples by nucleic acid tests: comparison with culture and enzyme immunoassay of genital swab specimens. J. Clin. Microbiol. 35, 3355–3357.

    PubMed  CAS  Google Scholar 

  27. Dubuis, O., Gorgievski-Hrisoho, M., Germann, D., and Matter, L. (1997) Evaluation of 2-SP transport medium for detection of Chlamydia trachomatis and Neisseria gonorrhoeae by two automated amplification systems and culture for chlamydia. J. Clin. Pathol. 50, 947–950.

    Article  PubMed  CAS  Google Scholar 

  28. Hook, E. W., III, Smith, K., Mullen, C., Stephens, J., Rinehardt, L., Pate, M. S., and Lee, H. H. (1997) Diagnosis of genitourinary Chlamydia trachomatis infections by using the ligase chain reaction on patient-obtained vaginal swabs. J. Clin. Microbiol. 35, 2133–2135.

    PubMed  Google Scholar 

  29. Stary, A., Schuh, E., Kerschbaumer, M., Gotz, B., and Lee, H. (1998) Performance of transcription-mediated amplification and ligase chain reaction assays for detection of chlamydial infection in urogenital samples obtained by invasive and noninvasive methods. J. Clin. Microbiol. 36, 2666–2670.

    PubMed  CAS  Google Scholar 

  30. Carroll, K. C., Aldeen, W. E., Morrison, M., Anderson, R., Lee, D., and Mottice, S. (1998) Evaluation of the Abbott LCx ligase chain reaction assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine and genital swab specimens from a sexually transmitted disease clinic population. J. Clin. Microbiol. 36, 1630–1633.

    PubMed  CAS  Google Scholar 

  31. Garrino, M. G., Glupczynski, Y., Degraux, J., Nizet, H., and Delmee, M. (1999) Evaluation of the Abbott LCx Mycobacterium tuberculosis assay for direct detection of Mycobacterium tuberculosis complex in human samples. J. Clin. Microbiol. 37, 229–232.

    PubMed  CAS  Google Scholar 

  32. Moore, D. F. and Curry, J. I. (1998) Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by ligase chain reaction. J. Clin. Microbiol. 36, 1028–1031.

    PubMed  CAS  Google Scholar 

  33. Ausina, V., Gamboa, F., Gazapo, E., Manterola, J. M., Lonca, J., Matas, L., et al. (1997) Evaluation of the semiautomated Abbott LCx Mycobacterium tuberculosis assay for direct detection of Mycobacterium tuberculosis in respiratory specimens. J. Clin. Microbiol. 35, 1996–2002.

    PubMed  CAS  Google Scholar 

  34. Lindbrathen, A., Gaustad, P., Hovig, B., and Tonjum, T. (1997) Direct detection of Mycobacterium tuberculosis complex in clinical samples from patients in Norway by ligase chain reaction. J. Clin. Microbiol. 35, 3248–353.

    PubMed  CAS  Google Scholar 

  35. Fadda, G., Ardito, F., Sanguinetti, M., Posteraro, B., Ortona, L., Chezzi, C., et al. (1998) Evaluation of the Abbott LCx Mycobacterium tuberculosis assay in comparison with culture methods in selected Italian patients. New Microbiol. 21, 97–103.

    PubMed  CAS  Google Scholar 

  36. Birkenmeyer, L. and Armstrong, A. S. (1992) Preliminary evaluation of the ligase chain reaction for specific detection of Neisseria gonorrhoeae. J. Clin. Microbiol. 30, 3089–3094.

    PubMed  CAS  Google Scholar 

  37. Wilson, V. L., Wei, Q., Wade, K. R., Chisa, M., Bailey, D., Kanstrup, C. M., et al. (1999) Needle-in-a-haystack detection and identification of base substitution mutations in human tissues. Mutat. Res. 406, 79–100.

    PubMed  CAS  Google Scholar 

  38. Abravaya, K., Carrino, J. J., Muldoon, S., and Lee, H. H. (1995) Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Res. 23, 675–682.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Benjamin, W.H., Smith, K.R., Waites, K.B. (2003). Ligase Chain Reaction. In: Bartlett, J.M.S., Stirling, D. (eds) PCR Protocols. Methods in Molecular Biology™, vol 226. Humana Press. https://doi.org/10.1385/1-59259-384-4:135

Download citation

  • DOI: https://doi.org/10.1385/1-59259-384-4:135

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-642-0

  • Online ISBN: 978-1-59259-384-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics