Skip to main content

An In Vivo Model of Ischemia/Reperfusion and Inflammation of the Kidneys of the Rat

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 225))

Abstract

Renal failure is defined as the cessation of kidney function. Acute renal failure (ARF) involves the failure of the kidney over a period of hours or days and is potentially reversible, whereas chronic renal failure (CRF) develops over months or years and involves the irreversible destruction of kidney tissue by progressive renal disease(s) leading to endstage renal disease (ESRD).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Thadhani, R., Pascual, M., and Bonventre, J. V. (1996) Acute renal failure. N. Engl. J. Med. 334, 1448–1460.

    Article  PubMed  CAS  Google Scholar 

  2. Star, R. A. (1998) Treatment of acute renal failure. Kidney Int. 54, 1817–1831.

    Article  PubMed  CAS  Google Scholar 

  3. McCarthy, J. T. (1996) Prognosis of patients with acute renal failure in the intensive care unit: a tail of two eras. Mayo Clinic Proc. 71, 117–126.

    Article  CAS  Google Scholar 

  4. Breen, D. and Bihari, D. (1998) Acute renal failure as a part of multiple organ failure: the slippery slope of critical illness. Kidney Int. 66, S25–S33.

    CAS  Google Scholar 

  5. Maisonneuve, P., Agodoa, L., Gellert, R., Stewart, J. H., Buccianti, G., Lowenfels, A. B., et al. (2000) Distribution of primary renal diseases leading to end-stage renal failure in the United States, Europe, and Australia/New Zealand: results from an international comparative study. Am. J. Kidney Dis. 35, 157–165.

    Article  PubMed  CAS  Google Scholar 

  6. Ritz, E., Rychlik, I., Locatelli, F., and Halimi, S. (1999) End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions. Am. J. Kidney Dis. 34, 795–808.

    Article  PubMed  CAS  Google Scholar 

  7. U.S. Renal Data System (USRDS) at http://www.usrds.org

  8. Gilbert, R. E., Kelly, D. J., and Atkins, R. C. (2001) Novel approaches to the treatment of progressive renal disease. Curr. Opin. Pharmacol. 1, 183–189.

    Article  PubMed  CAS  Google Scholar 

  9. Bakris, G. L., Williams, M., Dworkin, L., Elliott, W. J., Epstein, M., Toto, R., et al. (2000) Preserving renal function in adults with hypertension and diabetes: a concensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working group. Am. J. Kidney Dis. 36, 646–661.

    Article  PubMed  CAS  Google Scholar 

  10. Lewis E. J., Hunsicker L. G., Bain, R. P., and Rohde, R. D. (1993) The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. The collaborative study group. N. Engl. J. Med. 329, 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  11. The GISEN group (Gruppo Italiano di Studi Epidemiologici in Nephrologia). (1997) Randomized placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 349, 1857–1863.

    Article  Google Scholar 

  12. Goekjian, P. G. and Jirousek, M. R. (1999) Protein kinase C in the treatment of disease: signal transduction pathways, inhibitors, and agents in development. Curr. Med. Chem. 6, 877–903.

    PubMed  CAS  Google Scholar 

  13. Koya, D., Haneda, M., Nakagawa, H., Isshiki, K., Sato, H., Maeda, S., et al. (2000) Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC β inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 14, 439–447.

    PubMed  CAS  Google Scholar 

  14. Eckardt, K. U. (2000) Acute renal failure—more than kidney ischemia? Wein. Klin. Wochenschr. 112, 145–148.

    CAS  Google Scholar 

  15. Kaysen, G. A. (2000) Inflammation and oxidative stress in end-stage renal disease. Adv. Nephrol. Necker Hosp. 30, 201–214.

    PubMed  CAS  Google Scholar 

  16. Vos, I. H., Rabelink, T. J., Dorland, B., Loos, R., Van Middelaar, B., Grone, H. J. et al. (2001) L-arginine supplementation improves function and reduces inflammation in renal allografts. J. Am. Soc. Nephrol. 12, 361–367.

    PubMed  CAS  Google Scholar 

  17. Albrecht, E. W., van Goor, H., Tiebosch, A. T., Moshage, H., Tegzess, A. M., and Stegeman, C. A. (2000) Nitric oxide production and nitric oxide synthase expression in acute human renal allograft rejection. Transplantation 70, 1610–1616.

    Article  PubMed  CAS  Google Scholar 

  18. Couser, W. G. (1998) Pathogenesis of glomerular damage in glomerulonephritis. Nephrol. Dial. Transplant. 13, 10–15.

    Article  PubMed  Google Scholar 

  19. van Kooten, C., Langers, A. M., Bruijn, J. A., and Daha, M. R. (1999) Role of tubular cells in progressive renal disease. Kidney Blood Press. Res. 22, 53–61.

    Article  PubMed  Google Scholar 

  20. Daha, M. R. and van Kooten, C. (2000) Is the proximal tubular cell a proinflammatory cell? Nephrol. Dial. Transplant. 15, 41–43.

    Article  PubMed  Google Scholar 

  21. Inthorn, D. and Hoffman, J. N. (1996) Elimination of inflammatory mediators by hemofiltration. Int. J. Artif. Organs 19, 124–126.

    PubMed  CAS  Google Scholar 

  22. Montoliu, J. (1997) Clearance of inflammatory mediators through continuous renal replacement therapy. Blood Purif. 15, 305–308.

    Article  PubMed  CAS  Google Scholar 

  23. Molitoris, B. A. and Marrs, J. (1999) The role of cell adhesion molecules in ischemic acute renal failure. Am. J. Med. 106, 583–592.

    Article  PubMed  CAS  Google Scholar 

  24. Lieberthal, W. (1998) Biology of ischemic and toxic renal tubular cell injury: role of nitric oxide and the inflammatory response. Curr. Opin. Nephrol. Hypertens. 7, 289–295.

    PubMed  CAS  Google Scholar 

  25. Baud, L. and Ardaillou, R. (1986) Reactive oxygen species: production and role in the kidney. Am. J. Physiol. 251, F765–F776.

    PubMed  CAS  Google Scholar 

  26. Guijarro, C. and Egido, J. (2001) Transcription factor-ºB (NF-ºB) and renal disease. Kidney Int. 59, 415–424.

    Article  PubMed  CAS  Google Scholar 

  27. Grace, P. A. (1994) Ischaemia-reperfusion injury. Br. J. Surg. 81, 637–647.

    Article  PubMed  CAS  Google Scholar 

  28. Weight, S. C., Furness, P. N., and Nicholson, M. L. (1998) Nitric oxide generation is increased in experimental renal warm ischemia-reperfusion injury. Br. J. Surg. 85, 1663–1668.

    Article  PubMed  CAS  Google Scholar 

  29. Nath K. A. and Norby, S. M. (2000) Reactive oxygen species and acute renal failure. Am. J. Med. 109, 665–678.

    Article  PubMed  CAS  Google Scholar 

  30. Pryor, W. and Squadrito, G. (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, L699–L772.

    PubMed  CAS  Google Scholar 

  31. Wei, X. Q., Charles, I. G., Smith, A., Ure, J., Feng, G. J., Huang, F. P., et al. (1995) Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408–411.

    Article  PubMed  CAS  Google Scholar 

  32. Chatterjee P. K., Cuzzocrea, S., Brown, P. A., Zacharowski, K., Stewart, K. N., Mota-Filipe, H., et al. (2000) Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int. 58, 658–673.

    Article  PubMed  CAS  Google Scholar 

  33. Klahr, S. (2001) The role of nitric oxide in hypertension and renal disease progression. Nephrol. Dial. Transplant. 16, 60–62.

    PubMed  CAS  Google Scholar 

  34. Weight, S. C., Bell, P. R., and Nicholson, M. L. (1996) Renal ischemia-reperfusion injury. Br. J. Surg. 83, 162–170.

    Article  PubMed  CAS  Google Scholar 

  35. Novis, B. K., Roizen, M. F., Aronson, S., and Thisted, R. A. (1994) Association of preoperative risk factors with postoperative acute renal failure. Anesth. Analg. 778, 143–149.

    Google Scholar 

  36. Aronson, S. and Blumenthal, R. (1998) Perioperative renal dysfunction and cardiovascular anesthesia: concerns and controversies. J. Cardiothorac. Vasc. Anesth. 17, 117–130.

    Google Scholar 

  37. Paller, M. S. (1994) The cell biology of reperfusion injury in the kidney. J. Investig. Med. 42, 632–639.

    PubMed  CAS  Google Scholar 

  38. Shoskes, D. A. and Halloran, P. F. (1996) Delayed graft function in renal transplantation: etiology, management and long-term significance. J. Urol. 155, 1837–1840.

    Article  Google Scholar 

  39. Chatterjee, P. K., Brown, P. A. J., Cuzzocrea, S., Zacharowski, K., Stewart, K. N., Mota-Filipe, H., et al. (2001) Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in the rat. Kidney Int. 59, 2073–2083.

    PubMed  CAS  Google Scholar 

  40. Singbartl, K., Green, S. A., and Ley, K. (2000) Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J. 14, 48–54.

    PubMed  CAS  Google Scholar 

  41. Chatterjee, P. K., Zacharowski, K., Cuzzocrea, S., Otto, M., and Thiemermann, C. (2000) Inhibitors of poly (ADP-ribose) synthetase reduce ischemia-reperfusion injury in the anesthetised rat in vivo. FASEB J. 14, 641–651.

    PubMed  CAS  Google Scholar 

  42. Chatterjee, P. K., Hawksworth, G. M., and McLay, J. S. (1999) Cytokine-stimulated nitric oxide production in human renal proximal tubule and its modulation by natriuretic peptides: a novel immunomodulatory mechanism? Exp. Nephrol. 7 438–448.

    Article  PubMed  CAS  Google Scholar 

  43. Chatterjee, P.K., Cuzzocrea, S., and Thiemermann, C. (1999) Inhibitors of poly (ADP-ribose) synthetase protect rat proximal tubular cells against oxidant stress. Kidney Int. 56, 973–984.

    Article  PubMed  CAS  Google Scholar 

  44. Williams, P., Lopez, H., Britt, D., Chan, C., Ezrin, A., and Hottendorf, R. (1997) Characterisation of renal ischemia-reperfusion injury in rats. J. Pharm. Toxicol. Meth. 37, 1–7.

    Article  CAS  Google Scholar 

  45. Zager, R. A. and Altschuld, R. (1986) Body temperature: an important determinant of severity of ischemic renal injury. Am. J. Physiol. 251, F87–F93.

    PubMed  CAS  Google Scholar 

  46. Zager, R. A., Gmur, D. J., Bredl, C. R., and Eng, M. J. (1991) Temperature effects on ischemic and hypoxic renal proximal tubular injury. Lab. Invest. 64, 766–776.

    PubMed  CAS  Google Scholar 

  47. Baum, N., Dichoso, C. C., and Carlton, C. E. (1975) Blood urea nitrogen and serum creatinine: physiology and interpretations. Urology 5, 583–588.

    Article  PubMed  CAS  Google Scholar 

  48. Stogdale, L. (1981) Correlation of changes in blood chemistry with pathological changes in the animal’s body: II Electrolytes, kidney function tests, serum enzymes, and liver function tests. J. South Afr. Vet. Assoc. 52, 155–164.

    CAS  Google Scholar 

  49. Harrison, D. J., Kharbanda, R., Scott-Cunningham, D., McLellan, L. I., and Hayes, J. D. (1989) Distribution of glutathione S-transferase isoenzymes in human kidney: basis for possible markers of renal injury. J. Clin. Pathol. 42, 624–628.

    Article  PubMed  CAS  Google Scholar 

  50. Bosomworth, M. P., Aparicio, S. R. and Hay, A. W. M. (1999) Urine N-acetyl-β-d-glucosaminidase—a marker of tubular damage? Nephrol. Dial. Transplant. 14, 620–626.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Chatterjee, P.K., Thiemermann, C. (2003). An In Vivo Model of Ischemia/Reperfusion and Inflammation of the Kidneys of the Rat. In: Winyard, P.G., Willoughby, D.A. (eds) Inflammation Protocols. Methods in Molecular Biology, vol 225. Humana Press. https://doi.org/10.1385/1-59259-374-7:223

Download citation

  • DOI: https://doi.org/10.1385/1-59259-374-7:223

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-970-4

  • Online ISBN: 978-1-59259-374-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics