Skip to main content

Recombinant Single-Chain and Disulfide-Stabilized Fv Immunotoxins for Cancer Therapy

  • Protocol
Recombinant Antibodies for Cancer Therapy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 207))

  • 926 Accesses

Abstract

The rapid progress in understanding the molecular biology of cancer cells has made a large impact on the design and development of novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pastan I., Chaudhary V. and FitzGerald D. J. (1992). Recombinant toxins as novel therapeutic agents. Ann. Rev. Biochem. 61, 331–354.

    Article  PubMed  CAS  Google Scholar 

  2. Vitteta E. S. (1994). From the basic science of B cells to biological missiles at the bedside. J. Immunol. 153, 1407–1420.

    Google Scholar 

  3. Kreitam R. J. and Pastan I (1998). Immunotoxins for targeted cancer therapy. Ad. Drug Delivery Rev. 31, 53–88.

    Article  Google Scholar 

  4. Kreitman R. J. (1999). Immunotoxins in cancer therapy. Curr. Opin. Immunol. 11, 570–578.

    Article  PubMed  CAS  Google Scholar 

  5. Veale D., Kerr N., Gibson G. J., and Harris A. L. (1989). Characterization of epidermal growth factor receptor in primary human non-small cell lung cancer. Cancer Res. 49, 1313–1317.

    PubMed  CAS  Google Scholar 

  6. Lau J. L., Fowler J., and Ghosh L. (1988). Epidermal growth factor in normal and neoplastic kidney and bladder. J. Urol. 139, 170–175.

    PubMed  CAS  Google Scholar 

  7. Hung M. C. and Lau Y. K. (1999). Basic science of HER-2/neu, a review. Semin. Oncol. 26(4 Suppl 12), 51–59.

    PubMed  CAS  Google Scholar 

  8. Ross J. S. and Fletcher J. A. (1999). HER-2/neu (c-erb-B2) gene and protein in breast cancer. Am. J. Clin. Pathol. 112(1 Suppl 1), S53–S67.

    PubMed  CAS  Google Scholar 

  9. Vitteta E. S., Sonte M., AmLot P., et al. (1991). Phase I immunotoxin trail in patients with B-cell lymphoma. Cancer Res. 51, 4052–4058.

    Google Scholar 

  10. Grossbard M. L., Lambert J. M., Goldmacher V. S., et al. (1993). Anti-B4-blocked ricine, a phase I trail of 7-day continuous infusion in patients with B-cell neoplasms. J. Clin. Oncol. 11, 726–737.

    PubMed  CAS  Google Scholar 

  11. Waldmann T. A., Pastan I, Gansow O. A., et al. (1992). The multichain interleukin-2 receptor, a target for immunotherapy. Ann. Intern. Med. 116, 148–160.

    PubMed  CAS  Google Scholar 

  12. Chang K., Pai L. H., Batra J. K., Pastan I., and Willingham M. C. (1992). Characterization of the antigen (CAK1) recognized by monoclonal antibody K1 present on ovarian cancers and normal mesothelium. Cancer Res, 52, 181–186.

    PubMed  CAS  Google Scholar 

  13. Chang K. and Pastan I. (1996). Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc. Natl. Acad. Sci. USA 93, 136–140.

    Article  PubMed  CAS  Google Scholar 

  14. Pastan I., Lovelace E., Rutherford A. V., Kunwar S., Willingham M. C., and Peehl D. M. (1993). PR1-a monoclonal antibody that reacts with an antigen on the surface of normal and malignant prostate cells. J. Natl. Cancer Inst. 85, 1149–1154.

    Article  PubMed  CAS  Google Scholar 

  15. Pastan I., Lovelace E. T., Gallo M. G., Rutherford A. V., Magnani J. L., and Willingham M. C. (1991). Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomas. Cancer Res, 51, 3781–3787.

    PubMed  CAS  Google Scholar 

  16. Raag R. and Whitlow M. (1995). Single-chain Fvs. FASEB J. 9, 73–80.

    PubMed  CAS  Google Scholar 

  17. Winter G. and Milstein C. (1991). Man-made antibodies. Nature 349, 293–299.

    Article  PubMed  CAS  Google Scholar 

  18. Huston J. S., Levinson D., Mudgett-Hunter M., Tai M. S., Novotny J., Margolies M. N., et al. (1988). Protein engineering of antibody binding sites, recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  PubMed  CAS  Google Scholar 

  19. Bird R. E., Hardman K. D., Jacobson J. W., Johnson S., Kaufman B. M., Lee S. M., et al. (1988). Single-chain antigen-binding proteins. Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  20. Brinkmann U., Reiter Y., Jung S. H., Lee B., and Pastan I. (1993). A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc. Natl. Acad. Sci. USA 90, 7538–7542.

    Article  PubMed  CAS  Google Scholar 

  21. Reiter Y. and Pastan I. (1996). Antibody engineering of recombinant Fv immunotoxins for improved targeting of cancer, disulfide-stabilized Fv immunotoxins. Clin. Cancer Res. 2, 245–252.

    PubMed  CAS  Google Scholar 

  22. Reiter Y., Brinkmann U., Lee B., and Pastan I. (1996). Engineering antibody Fv fragments for cancer detection and therapy, disulfide-stabilized Fv fragments. Nature Biotechnol. 14, 1239–1245.

    Article  CAS  Google Scholar 

  23. Batra J. K., Jinno Y., Chaudhary V. K., Kondo T., Willingham M. C., FitzGerald D. J., and Pastan I. (1989). Antitumor activity in mice of an immunotoxin made with anti-transferrin receptor and a recombinant form of Pseudomonas exotoxin. Proc. Natl. Acad. Sci. USA 86, 8545–8549.

    Article  PubMed  CAS  Google Scholar 

  24. Chaudhary V. K., Queen C., Junghans R. P., Waldmann T. A., FitzGerald D. J., and Pastan I. (1989). A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339, 394–397.

    Article  PubMed  CAS  Google Scholar 

  25. Brinkmann U., Pai L. H., FitzGerald D. J., Willingham M., and Pastan I. (1991). B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc. Natl. Acad. Sci. USA 88, 8616–8620.

    Article  PubMed  CAS  Google Scholar 

  26. Batra J. K., Kasprzyk P. G., Bird R. E., Pastan I., and King C. R. (1992). Recombinant anti-erbB2 immunotoxins containing Pseudomonas exotoxin. Proc. Natl. Acad. Sci. USA 89, 5867–5871.

    Article  PubMed  CAS  Google Scholar 

  27. Kuan C. T. and Pastan I. (1996). Improved antitumor activity of a recombinant anti-Lewis(y) immunotoxin not requiring proteolytic activation. Proc. Natl. Acad. Sci. USA 93, 974–978.

    Article  PubMed  CAS  Google Scholar 

  28. Reiter Y., Wright A. F., Tonge D. W., and Pastan I. (1996). Recombinant single-chain and disulfide-stabilized Fv-immunotoxins that cause complete regression of a human colon cancer xenograft in nude mice. Int. J. Cancer 67, 113–123.

    Article  PubMed  CAS  Google Scholar 

  29. Reiter Y., Pai L. H., Brinkmann U., Wang Q. C., and Pastan I. (1994). Antitumor activity and pharmacokinetics in mice of a recombinant immunotoxin containing a disulfidestabilized Fv fragment. Cancer Res. 54, 2714–2718.

    PubMed  CAS  Google Scholar 

  30. Reiter Y., Brinkmann U., Jung S. H., Lee B., Kasprzyk P. G., King C. R., and Pastan I. (1994). Improved binding and antitumor activity of a recombinant anti-erbB2 immunotoxin by disulfide stabilization of the Fv fragment. J. Biol. Chem. 269, 18327–18331.

    PubMed  CAS  Google Scholar 

  31. Mansfield E., AmLot P., Pastan I., and FitzGerald D. J. (1997). Recombinant RFB4 immunotoxins exhibit potent cytotoxic activity for CD22-bearing cells and tumors. Blood 90, 2020–2026.

    PubMed  CAS  Google Scholar 

  32. Kreitman R. J., Chaudhary V. K., Kozak R. W., FitzGerald D. J. P., Waldmann T. A., and Pastan I. (1992). Recombinant toxins containing the variable domains of the anti-Tac monoclonal antibody to the interleukin-2 receptor kill malignant cells from patients with chronic lymphocytic leukemia. Blood 80, 2344–2352.

    PubMed  CAS  Google Scholar 

  33. Kreitman R. J., Chaudhary V. K., Waldmann T., Willingham M. C., FitzGerald D. J., and Pastan I. (1990). The recombinant immunotoxin anti-Tac(Fv)-Pseuodomonas exotoxin 40 is cytotoxic toward peripheral blood malignant cells from patients with adult T-cell leukemia. Proc. Natl. Acad. Sci. USA 87, 8291–8295.

    Article  PubMed  CAS  Google Scholar 

  34. Pai L. H., Wittes R., Setser A., Willingham M. C., and Pastan I. (1996). Treatment of advanced solid tumors with immunotoxin LMB-1, an antibody linked to Pseudomonas exotoxin. Nat. Med. 2, 350–353.

    Article  PubMed  CAS  Google Scholar 

  35. Pai L. H. and Pastan I. (1998). Clinical trials with Pseudomonas exotoxin immunotoxins. Curr. Top. Microbiol. Immunol. 234, 83–96.

    PubMed  CAS  Google Scholar 

  36. Pastan I. H., Pai L. H., Brinkmann U., and Fitzgerald D. J. (1995). Recombinant toxins, new therapeutic agents for cancer. Ann. NY Acad. Sci. 758, 345–354.

    Article  PubMed  CAS  Google Scholar 

  37. Pastan I. H., Archer G. E., McLendon R. E., Friedman H. S., Fuchs H. E., Wang Q. C., et al. (1995). Intrathecal administration of single-chain immunotoxin, LMB-7 [B3(Fv)-PE38], produces cures of carcinomatous meningitis in a rat model. Proc. Natl. Acad. Sci. USA 92, 2765–2769.

    Article  PubMed  CAS  Google Scholar 

  38. Reiter Y., Pai L. H., Brinkmann U., Wang Q. C., and Pastan I. (1994). Antitumor activity and pharmacokinetics in mice of a recombinant immunotoxin containing a disulfidestabilized Fv fragment. Cancer Res. 54, 2714–2718.

    PubMed  CAS  Google Scholar 

  39. Lorimer I. A., Keppler-Hafkemeyer A., Beers R. A., Pegram C. N., Bigner D. D., and Pastan I. (1996). Recombinant immunotoxins specific for a mutant epidermal growth factor receptor, targeting with a single chain antibody variable domain isolated by phage display. Proc. Natl. Acad. Sci. USA 93, 14,815–14,820.

    Article  PubMed  CAS  Google Scholar 

  40. Chowdhury P. S., Viner J. L., Beers R., and Pastan I. (1998). Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. Proc. Natl. Acad. Sci. USA 95, 669–674.

    Article  PubMed  CAS  Google Scholar 

  41. Kreitman R. J., Wilson W. H., Whie J. D., Stetler-Stevenson M., Jaffe E. S., Giardina S., et al. (2000). Phase I trail of recombinant immunotoxin anti-tac(Fv)-PE38 (LMB-2) in patients with hematological malignancies. J. Clin. Oncol. 18, 1622–1636.

    PubMed  CAS  Google Scholar 

  42. Kreitman R. J., Wilson W. H., Robbins D., Margulies I., Stetler-Stevenson M., Waldmann T. A., and Pastan I. (1999). Responses in refractory hairy cell leukemia to a recombinant immunotoxin. Blood 94, 3340–3348.

    PubMed  CAS  Google Scholar 

  43. Studier F. W. and Moffatt B. A. (1986). Use of bacteriophage T7 polymerase to direct selective expression of cloned genes. J. Mol. Bio1. 189, 113–130.

    Article  CAS  Google Scholar 

  44. Kabat E. A., Wu T. T., Perry H. M., Gottesman K. S., and Foeller C. (1991) Sequences of Proteins of Immunological Interest, 5th ed., US Dept. of Health and Human Services, NIH Publication No. 91-3242, National Institutes of Health Bethesda, MD.

    Google Scholar 

  45. Kunkel T. A. (1985). Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82, 488–492.

    Article  PubMed  CAS  Google Scholar 

  46. Brinkman U., Mattes R. E., and Buckel P. (1989). High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85, 109–114.

    Article  Google Scholar 

  47. Hoogenboom H. R. and Chames P. (2000). Natural and designer binding sites made by phage display technology. Immunol. Today 21, 371–378.

    Article  PubMed  CAS  Google Scholar 

  48. Hoogenboom H. R., Henderikx P. and de Haard H. (1998). Creating and engineering human antibodies for immunotherapy. Adv. Drug Deliv. Rev. 31, 5–31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Niv, R., Segal, D., Reiter, Y. (2003). Recombinant Single-Chain and Disulfide-Stabilized Fv Immunotoxins for Cancer Therapy. In: Welschof, M., Krauss, J. (eds) Recombinant Antibodies for Cancer Therapy. Methods in Molecular Biology™, vol 207. Humana Press. https://doi.org/10.1385/1-59259-334-8:255

Download citation

  • DOI: https://doi.org/10.1385/1-59259-334-8:255

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-918-6

  • Online ISBN: 978-1-59259-334-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics