Skip to main content

Hybrid Capture of Putative Tumor Suppressor Genes

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 222))

  • 909 Accesses

Abstract

During the last part of the twentieth century, research on human cancer increasingly focused on the molecular basis of this disease. These studies have identified many facets of cellular transformation, including aberrant cell cycle regulation, inhibition of programmed cell death or apoptosis, impaired DNA damage repair systems, genomic instability, and altered signal transduction in an increasing number of pathways. However, we have only begun the formidable task of identifying all the genes responsible for these cellular and genetic alterations. Over the past four decades, investigators have developed multiple models to investigate the processes of malignant transformation, including transformation of cells both in vitro and in the animal by chemical carcinogens or oncogenic viruses. Immortal human and rodent tumor cell lines have proved especially amenable for identification of oncogenes and tumor suppressor genes. In order to map and identify functional tumor suppressor genes directly, we and others have used the technique of microcell hybridization to transfer chromosomes from normal human cells into human tumor cell lines (1,2). By this approach, we first showed that introduction of a normal human chromosome 11 into a Wilms’ tumor cell line causes a complete suppression of tumorigenicity (3). After our initial study, multiple laboratories have established the validity of this experimental system by the demonstration that transfer of specific human chromosomes into a variety of different human tumor cell lines results in the suppression of tumorigenic potential (49). In this chapter, we outline a general strategy for mapping the location of tumor suppressor genes by microcell-mediated chromosome transfer (MMCT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fournier, R. E. K. and Ruddle, F. H. (1977) Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc. Natl. Acad. Sci. USA 74, 319–323.

    Article  PubMed  CAS  Google Scholar 

  2. Ege, T. and Ringertz, N. R. (1974) Preparation of microcells by enucleation of micronucleated cells. Exp. Cell. Res. 87, 378–382.

    Article  PubMed  CAS  Google Scholar 

  3. Weissman, B. E., Saxon, P. J., Pasquale, S. R., Jones, G. R., Geiser, A. G., and Stanbridge, E. J. (1987) Introduction of a normal human chromosome 11 into a Wilms’ tumor cell line controls its tumorigenic expression. Science 236, 175–180.

    Article  PubMed  CAS  Google Scholar 

  4. Koi, M., Morita, H., Yamada, H., Satoh, H., Barrett, J. C., and Oshimura, M. (1989) Normal human chromosome 11 suppresses tumorigenicity of human cervical tumor cell line SiHa. Mol. Carcinogen. 2, 12–21.

    Article  CAS  Google Scholar 

  5. Nihei, N., Ichikawa, T., Kawana, Y., et al. (1996) Mapping of metastasis suppressor gene(s) for rat prostate cancer on the short arm of human chromosome 8 by irradiated microcell-mediated chromosome transfer. Genes Chromosomes Cancer 17, 260–268.

    Article  PubMed  CAS  Google Scholar 

  6. Oshimura, M., Kugoh, H. M., Shimizu, M., et al. (1989) Multiple chromosomes carrying tumor suppressor activity, via microcell-mediated chromosome transfer, for various tumor cell lines, in Genetic Basis for Carcinogenesis: Tumor Suppressor Genes and Oncogenes (Knudson, A. G., Stanbridge, E. J., Sugimura, T., Terada, M., and Watanabe, S., eds.), Scientific Societies Press, Tokyo, pp. 279–257.

    Google Scholar 

  7. Satoh, H., Lamb, P. W., Dong, et al. (1993) Suppression of tumorigenicity of A549 lung adenoacarcinoma cells by human chromosomes 3 and 11 introduced via microcell-mediated chromosome transfer. Mol. Carcinogen. 7, 157–164.

    Article  CAS  Google Scholar 

  8. Tanaka, K., Kikuchi-Yanoshita, R., Muraoka, M., Konishi, M., Oshimura, M., and Miyaki, M. (1996) Suppression of tumorigenicity and invasiveness of colon carcinoma cells by introduction of normal chromosome 8p12-pter. Oncogene 12, 405–410.

    PubMed  CAS  Google Scholar 

  9. Yamada, H., Wake, N., Fujimoto, S., Barrett, J. C., and Oshimura, M. (1990) Multiple chromosomes carrying tumor suppressor activity for a uterine endometrial carcinoma cell line identified by microcell-mediated chromosome transfer. Oncogene 5, 1141–1147.

    PubMed  CAS  Google Scholar 

  10. Speevak, M. D., Berube, N. G., McGowan-Jordan, I. J., Bisson, C., Lupton, S. D., and Chevrette, M. (1995) Construction and analysis of microcell hybrids containing dual selectable tagged human chromosomes. Cytogenet. Cell Genet. 69, 63–65.

    Article  PubMed  CAS  Google Scholar 

  11. Trott, D. A., Cuthbert, A. P., Todd, C. M., Themis, M., and Newbold, R. F. (1995) Novel use of a selectable fusion gene as an “in-out” marker for studying genetic loss in mammalian cells. Mol. Carcinogen. 12, 213–224.

    Article  CAS  Google Scholar 

  12. Kucherlapati, R. and Shin, S. I. (1979) Genetic control of tumorigenicity in interspecific mammalian cell hybrids. Cell 16, 639–648.

    Article  PubMed  CAS  Google Scholar 

  13. Koi, M., Shimizu, M., Morita, H., Yamada, H., and Oshimura, M. (1989) Construction of mouse A9 clones containing a single human chromosome tagged with neomycin-resistance gene via microcell fusion. Jpn. J. Cancer Res. 80, 413–418.

    Article  PubMed  CAS  Google Scholar 

  14. Saxon, P. J., Srivatsan, E. S., Leipzig, G. V., Sameshima, J. H., and Stanbridge, E. J. (1985) Selective transfer of individual human chromosomes to recipient cells. Mol. Cell. Biol. 5, 140–146.

    PubMed  CAS  Google Scholar 

  15. Stubblefield, E. and Pershouse, M. (1992) Direct formation of microcells from mitotic cells for use in chromosome transfer. Somat. Cell. Mol. Genet. 18, 485–491.

    Article  PubMed  CAS  Google Scholar 

  16. Killary, A. M. and Fournier, R. E. (1995) Microcell fusion. Meth. Enzymol. 254, 133–152.

    Article  PubMed  CAS  Google Scholar 

  17. Nguyen, T. M. and Morris, G. E. (1996) Production of panels of monoclonal antibodies by the hybridoma method. Meth. Mol. Biol. 66, 377–389.

    CAS  Google Scholar 

  18. Anderson, M. J. and Stanbridge, E. J. (1993) Tumor suppressor genes studied by cell hybridization and chromosome transfer. FASEB J. 7, 826–833.

    PubMed  CAS  Google Scholar 

  19. Leung, J. K. and Pereira-Smith, O. M. (2001) Identification of genes involved in cell senescence and immortalization: potential implications for tissue ageing. Novartis Found. Symp. 235, 105–110.

    Article  PubMed  CAS  Google Scholar 

  20. Yoshida, B. A., Sokoloff, M. M., Welch, D. R., and Rinker-Schaeffer, C. W. (2000) Metastasis-suppressor genes: a review and perspective on an emerging field. J. Natl. Cancer Inst. 92, 1717–1730.

    Article  PubMed  CAS  Google Scholar 

  21. Ichikawa, T., Hosoki, S., Suzuki, H., et al. (2000) Mapping of metastasis suppressor genes for prostate cancer by microcell-mediated chromosome transfer. Asian J. Androl. 2, 167–171.

    PubMed  CAS  Google Scholar 

  22. Nihei, N., Ohta, S., Kuramochi, H., et al. (1999) Metastasis suppressor gene(s) for rat prostate cancer on the long arm of human chromosome 7. Genes Chromosomes Cancer 24, 1–8.

    Article  PubMed  CAS  Google Scholar 

  23. O’Briant, K., Jolicoeur, E., Garst, J., Campa, M., Schreiber, G., and Bepler, G. (1997) Growth inhibition of a human lung adenocarcinoma cell line by genetic complementation with chromosome 11. Anticancer Res. 17, 3243–3251.

    Google Scholar 

  24. Sabbioni, S., Negrini, M., Possati, L., et al. (1994) Multiple loci on human chromosome 11 control tumorigenicity of BK virus transformed cells. Int. J. Cancer 57, 185–191.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, J. H., Miele, M. E., Hicks, D. J., et al. (1996) KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst. 88, 1731–1737.

    Article  PubMed  CAS  Google Scholar 

  26. Yang, X., Welch, D. R., Phillips, K. K., Weissman, B. E., and Wei, L. L. (1997) KAI1, a putative marker for metastatic potential in human breast cancer. Cancer Lett. 119, 149–155.

    Article  PubMed  CAS  Google Scholar 

  27. Dong, J.-T., Lamb, P. W., Rinker-Schaeffer, C. W., Isaacs, J. T., and Barrett, J. C. (1994) Cloning and characterization of a putative metastasis suppressor gene on human chromosome 11p11.2–13 for prostatic cancer. Proc. Am. Assoc. Cancer Res. 35, 186.

    Google Scholar 

  28. Seraj, M. J., Samant, R. S., Verderame, M. F., and Welch, D. R. (2000) Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Res. 60, 2764–2769.

    PubMed  CAS  Google Scholar 

  29. Versteege, I., Sevenet, N., Lange, J., et al. (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206.

    Article  PubMed  CAS  Google Scholar 

  30. Jones, P. A. and Laird, P. W. (1999) Cancer epigenetics comes of age. Nat. Genet. 21, 163–167.

    Article  PubMed  CAS  Google Scholar 

  31. Wong, A. K., Shanahan, F., Chen, Y., et al. (2000) BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 60, 6171–6177.

    PubMed  CAS  Google Scholar 

  32. Zhang, H. S., Gavin, M., Dahiya, A., et al. (2000) Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79–89.

    Article  PubMed  CAS  Google Scholar 

  33. Strobeck, M. W., Knudsen, K. E., Fribourg, A. F., et al. (2000) BRG-1 is required for RB mediated cell cycle arrest. Proc. Natl. Acad. Sci. USA 97, 7748–7753.

    Article  PubMed  CAS  Google Scholar 

  34. Decristofaro, M. F., Betz, B. L., Rorie, C. J., Reisman, D. N., Wang, W., and Weissman, B. E. (2001) Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J. Cell. Physiol. 186, 136–145.

    Article  PubMed  CAS  Google Scholar 

  35. Muraoka, M., Konishi, M., Kikuchi-Yanoshita, R., et al. (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12, 1565–1569.

    PubMed  CAS  Google Scholar 

  36. Dieken, E. S., Epner, E. M., Fiering, S., Fournier, R. E. K., and Groudine, M. (1996) Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids. Nat. Genet. 12, 174–182.

    Article  PubMed  CAS  Google Scholar 

  37. Horike, S., Mitsuya, K., Meguro, M., et al. (2000) Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome. Hum. Mol. Genet. 9, 2075–2083.

    Article  PubMed  CAS  Google Scholar 

  38. Kuroiwa, Y., Shinohara, T., Notsu, T., et al. (1998) Efficient modification of a human chromosome by telomere-directed truncation in high homologous recombination-proficient chicken DT40 cells. Nucleic Acids Res. 26, 3447–3448.

    Article  PubMed  CAS  Google Scholar 

  39. Kugoh, H., Mitsuya, K., Meguro, M., Shigenami, K., Schulz, T. C., and Oshimura, M. (1999) Mouse A9 cells containing single human chromosomes for analysis of genomic imprinting. DNA Res. 6, 165–172.

    Article  PubMed  CAS  Google Scholar 

  40. Shinohara, T., Tomizuka, K., Takehara, S., et al. (2000) Stability of transferred human chromosome fragments in cultured cells and in mice. Chromosome Res. 8, 713–725.

    Article  PubMed  CAS  Google Scholar 

  41. Kuroiwa, Y., Tomizuka, K., Shinohara, T., et al. (2000) Manipulation of human minichromosomes to carry greater than megabase-sized chromosome inserts. Nat. Biotechnol. 18, 1086–1090.

    Article  PubMed  CAS  Google Scholar 

  42. Tomizuka, K., Shinohara, T., Yoshida, H., et al. (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc. Natl. Acad. Sci. USA 97, 722–727.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Betz, B.L., Weissman, B.E. (2003). Hybrid Capture of Putative Tumor Suppressor Genes. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 222. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-328-3:365

Download citation

  • DOI: https://doi.org/10.1385/1-59259-328-3:365

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-986-5

  • Online ISBN: 978-1-59259-328-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics