Skip to main content

Manipulating the Folding Pathway of ΔF508 CFTR Using Chemical Chaperones

  • Protocol
Cystic Fibrosis Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 70))

Abstract

Defects in protein folding constitute the basis of many genetic diseases: cystic fibrosis, alpha-1 antitrypsin deficiency, familial hypercholesterolemia, and congenital nephrogenic diabetes insipidus, to name but a few (see Table 1 for a complete list). In each of these, point mutations or deletions result in a protein product that fails to achieve its properly folded state. For example, in the case of the cystic fibrosis transmembrane conductance regular protein (CFTR), the most common mutation in patients is the loss of a single phenylalanine residue (at position 508) within a polypeptide of 1480 amino acids (1). This seemingly minor alteration results in the newly synthesized CFTR protein being unable to fold properly and traffic to its proper destination at the plasma membrane (2). Instead, the vast majority of the mutant protein is retained at an early point in its maturation pathway and over time is targeted to a degradative pathway (3-5). As a consequence, cells expressing the mutant protein are unable to transport chloride ions across the plasma membrane in response to rises in intracellular cAMP levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., Buchwald, M., and Tsui, L. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  2. Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., O’Riordan, C. R., and Smith, A. E. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.

    Article  CAS  PubMed  Google Scholar 

  3. Ward, C. L. and Kopito, R. R. (1994) Intracellular turnover of cystic fibrosis trnasmembrane conductance regulator. J. Biol. Chem. 269, 25,710–25,718.

    CAS  PubMed  Google Scholar 

  4. Jensen, T. J., Loo, M. A., Pind, S., Williams, D. B., Goldberg, A. L., and Riordan, J. R. (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135.

    Article  CAS  PubMed  Google Scholar 

  5. Ward, C. L., Omura, S., and Kopito, R. R. (1995) Intracellular turnover of cystic fibrosis transmembrane conductance regulator: inefficient processing and rapid degradation of wild-type and mutant proteins. Cell 83, 121–127.

    Article  CAS  PubMed  Google Scholar 

  6. Denning, G. M., Anderson, M. P., Amara, J. F., Marshallo, J., Smith, A. E., and Welsh, M. J. (1992) Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature sensitive. Nature 358, 761–764.

    Article  CAS  PubMed  Google Scholar 

  7. Drumm, M. L., Wilkinson, D. J., Smit, L. S., Worrell, R. T., Strong, T. V., Frizzell, R. A., Dawson, D. C., and Collins, F. S. (1991) Chloride conductance expressed by ΔF508 and other mutant CFTRs in Xenopus oocytes.Science 254, 1797–1799.

    CAS  Google Scholar 

  8. Hawthorne, D. C. and Friis, J. (1964) Osmotic-remedial mutants. A new classification for nutritional mutants in yeast. Genetics 50, 829–839.

    CAS  PubMed  Google Scholar 

  9. Russell, R. R. B. (1972) Temperature-sensitive osmotic remedial mutants of Escherichia coli. J. Bact. 112, 661–665.

    CAS  Google Scholar 

  10. Singer, M. A. and Lindquist, S. (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1, 639–648.

    Article  CAS  PubMed  Google Scholar 

  11. Brown, C. R., Hong-Brown, L. Q., Biwersi, J., Verkman, A. S., and Welch, W. J. (1996) Chemical chaperones correct the mutant phenotype of the DF508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1, 117–125.

    Article  CAS  PubMed  Google Scholar 

  12. Sato, S., Ward, C. L., Krouse, M. E., Wine, J. J., and Kopito, R. R. (1996) Glyc-erol reverses the misfolding phenotype of the most common cystic fibrosis mutation..J. Biol. Chem. 271, 635–638.

    Article  CAS  PubMed  Google Scholar 

  13. Tatzelt, J., Prusiner, S. B., and Welch, W. J. (1996) Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J. 15, 6363–6373.

    CAS  PubMed  Google Scholar 

  14. Brown, C. R., Hong-Brown, L. Q., and Welch, W. J. (1997) Correcting temperature-sensitive protein folding defects. J. Clin. Invest. 99, 1432–1444.

    Article  CAS  PubMed  Google Scholar 

  15. Tamarappoo, B. K. and Verkman, A. S. (1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J. Clin. Invest. 101, 2257–2267.

    Article  CAS  PubMed  Google Scholar 

  16. Yang, D., Yip, C. M., Huang, T. H. J., Chakrabartty, A., and Fraser, P. E. (1999) Manipulating the amyloid-β aggregation pathway with chemical chaperones. J. tBiol. Chem. 274, 32,970–32,974.

    Article  CAS  Google Scholar 

  17. Burrows, J. A. J., Willis, L. K., and Perlmutter, D. H. (2000) Chemical chapezones mediate increased secretion of mutant alpha-1-antitrypsin Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha-1-antitrypsin deficiency. Proc. Natl. Acad. Sci. USA 97 1796–1801.

    Article  CAS  PubMed  Google Scholar 

  18. Gekko, K. and Timasheff, S. N. (1981) Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 20, 4667–4676.

    Article  CAS  PubMed  Google Scholar 

  19. Somero, G. N. (1986) Protons, osmolytes, and fitness of internal milieu for protein function. Am. J. Physiol. 251 R197–R213.

    CAS  PubMed  Google Scholar 

  20. Schein, C. H. (1990) Solubility as a function of protein structure and solvent components. Bio/Technology 8, 308–316.

    Article  CAS  PubMed  Google Scholar 

  21. Burg, M. B. (1995) Molecular basis of omotic regulation. Am. J. Physiol. 268, F983–F996.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Howard, M., Welch, W.J. (2002). Manipulating the Folding Pathway of ΔF508 CFTR Using Chemical Chaperones. In: Skach, W.R. (eds) Cystic Fibrosis Methods and Protocols. Methods in Molecular Medicine™, vol 70. Humana Press. https://doi.org/10.1385/1-59259-187-6:267

Download citation

  • DOI: https://doi.org/10.1385/1-59259-187-6:267

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-897-4

  • Online ISBN: 978-1-59259-187-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics