Skip to main content

Simultaneous In Situ Detection of DNA Fragmentation and RNA/DNA Oxidative Damage Using TUNEL Assay and Immunohistochemical Labeling for 8-Hydroxy-2′-Deoxyguanosine (8-OHdG)

  • Protocol
In Situ Detection of DNA Damage

Part of the book series: Methods in Molecular Biology ((MIMB,volume 203))

  • 1075 Accesses

Abstract

Analysis of DNA fragmentation using Terminal deoxynucleotidyl Transferase (TdT)-mediated nick end-labeling (TUNEL) is a very sensitive technique for in situ detection of various types of DNA breaks in cells undergoing apoptosis and/ or necrosis (16). TUNEL technique is widely used, for instance, to study mechanisms underlying early development and morphogenesis (714), aging (1524), cancer (25,5,2535) and neurodegenerative diseases (36,20,21,3644). TUNEL detects the DNA fragmentation, which represents the end point of DNA degradation in apoptosis but does not depict primary stimuli that caused irreversible disruption to the integrity of DNA. Oxidative stress is one of such primary stimuli and there is a great deal of research aimed at unraveling the molecular mechanisms underlying oxidative damage to DNA by so-called reactive oxygen species (ROS) and oxygen radicals. Oxidative damage has been implicated in a wide variety of neurodegenerative disorders including Alzheimer’s dementia, amyotrophic lateral sclerosis, Huntington’s disease and Parkinson’s disease (4555). Formation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) is the most common modification of DNA caused by oxidative stress. Therefore, immunohistochemical quantification of 8-OHdG would be a valuable tool in determining the extent of oxidative DNA damage caused by ROS. On the other hand, methods analyzing the oxidative damage to the DNA, are not sufficient alone either, since they do not reveal whether oxidative stress will result in apoptosis and cell death or not. Thus, it appears that limitations of each individual assay may be overcome if both techniques are combined in a single assay that is applied to the same cytological of histological specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ansari B., Coates P. J., Greenstein B. D., and Hall P. A. (1993) In situ end-labeling detects DNA strand breaks in apoptosis and other physiological and pathological states. J. Pathol. 170, 1–8.

    Article  PubMed  CAS  Google Scholar 

  2. Allen R. T., Hunter W. J., 3rd, and Agrawal D. K. (1997) Morphological and biochemical characterization and analysis of apoptosis. J. Pharmacol. Toxicol. Methods 37, 215–228.

    Article  PubMed  CAS  Google Scholar 

  3. Heatwole V. M. (1999) TUNEL assay for apoptotic cells. Methods Mol. Biol. 115, 141–148.

    PubMed  CAS  Google Scholar 

  4. Takashi E. and Ashraf M. (2000) Pathologic assessment of myocardial cell necrosis and apoptosis after ischemia and reperfusion with molecular and morphological markers. J. Mol. Cell Cardiol. 32, 209–224.

    Article  PubMed  CAS  Google Scholar 

  5. Mangili F., Cigala C., and Santambrogio G. (1999) Staining apoptosis in paraffin sections. Advantages and limits. Anal. Quant. Cytol. Histol. 21, 273–276.

    PubMed  CAS  Google Scholar 

  6. van Lookeren Campagne M., Lucassen P. J., Vermeulen J. P., and Balazs R. (1995) NMDA and kainate induce internucleosomal DNA cleavage associated with both apoptotic and necrotic cell death in the neonatal rat brain. Eur. J. Neurosci. 7, 1627–1640.

    Article  PubMed  Google Scholar 

  7. Liu L. and Keefe D. L. (2000) Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes. Biol. Reprod. 62, 1828–1834.

    Article  PubMed  CAS  Google Scholar 

  8. Marin-Teva J. L., Cuadros M. A., Calvente R., Almendros A., and Navascues J. (1999) Naturally occurring cell death and migration of microglial precursors in the quail retina during normal development. J. Comp. Neurol. 412, 255–275.

    Article  PubMed  CAS  Google Scholar 

  9. Bessert D. A. and Skoff R. P. (1999) High-resolution in situ hybridization and TUNEL staining with free-floating brain sections. J. Histochem. Cytochem. 47, 693–702.

    PubMed  CAS  Google Scholar 

  10. Maciejewska B., Lipowska M., Kowianski P., Domaradzka-Pytel B., and Morys J. (1998) Postnatal development of the rat striatum—a study using in situ DNA end labeling technique. Acta. Neurobiol. Exp. (Warsz) 58, 23–28.

    CAS  Google Scholar 

  11. Simonati A., Rosso T., and Rizzuto N. (1997) DNA fragmentation in normal development of the human central nervous system: a morphological study during corticogenesis. Neuropathol. Appl. Neurobiol. 23, 203–211.

    Article  PubMed  CAS  Google Scholar 

  12. Fekete D. M., Homburger S. A., Waring M. T., Riedl A. E., and Garcia L. F. (1997) Involvement of programmed cell death in morphogenesis of the vertebrate inner ear. Development 124, 2451–2461.

    PubMed  CAS  Google Scholar 

  13. Vaahtokari A., Aberg T., and Thesleff I. (1996) Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4. Development 122, 121–129.

    PubMed  CAS  Google Scholar 

  14. Hensey C. and Gautier J. (1998) Programmed cell death during Xenopus development: a spatio-temporal analysis. Dev. Biol. 203, 36–48.

    Article  PubMed  CAS  Google Scholar 

  15. Asai K., Kudej R. K., Shen Y. T., Yang G. P., Takagi G., Kudej A. B., Geng Y. J., Sato N., Nazareno J. B., Vatner D. E., Natividad F., Bishop S. P., and Vatner S. F. (2000) Peripheral vascular endothelial dysfunction and apoptosis in old monkeys. Arterioscler. Thromb. Vasc. Biol. 20, 1493–1499.

    PubMed  CAS  Google Scholar 

  16. Borras D., Pumarola M., and Ferrer I. (2000) Neuronal nuclear DNA fragmentation in the aged canine brain: apoptosis or nuclear DNA fragility? Acta. Neuropathol. (Berl) 99, 402–408.

    Article  CAS  Google Scholar 

  17. Savory J., Rao J. K., Huang Y., Letada P. R., and Herman M. M. (1999) Age-related hippocampal changes in Bcl-2:Bax ratio, oxidative stress, redox-active iron and apoptosis associated with aluminum-induced neurodegeneration: increased susceptibility with aging. Neurotoxicology 20, 805–817.

    PubMed  CAS  Google Scholar 

  18. Aggarwal S., Gollapudi S., and Gupta S. (1999) Increased TNF-alpha-induced apoptosis in lymphocytes from aged humans: changes in TNF-alpha receptor expression and activation of caspases. J. Immunol. 162, 2154–2161.

    PubMed  CAS  Google Scholar 

  19. Harocopos G. J., Alvares K. M., Kolker A. E., and Beebe D. C. (1998) Human age-related cataract and lens epithelial cell death. Invest. Ophthalmol. Vis. Sci. 39, 2696–2706.

    PubMed  CAS  Google Scholar 

  20. Li W. P., Chan W. Y., Lai H. W., and Yew D. T. (1997) Terminal dUTP nick end labeling (TUNEL) positive cells in the different regions of the brain in normal aging and Alzheimer patients. J. Mol. Neurosci. 8, 75–82.

    Article  PubMed  CAS  Google Scholar 

  21. Troncoso J. C., Sukhov R. R., Kawas C. H., and Koliatsos V. E. (1996) In situ labeling of dying cortical neurons in normal aging and in Alzheimer’s disease: correlations with senile plaques and disease progression. J. Neuropathol. Exp. Neurol. 55, 1134–1142.

    Article  PubMed  CAS  Google Scholar 

  22. Aggarwal S. and Gupta S. (1998) Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J. Immunol. 160, 1627–1637.

    PubMed  CAS  Google Scholar 

  23. Usami S., Takumi Y., Fujita S., Shinkawa H., and Hosokawa M. (1997) Cell death in the inner ear associated with aging is apoptosis? Brain Res. 747, 147–150.

    Article  PubMed  CAS  Google Scholar 

  24. Kiatipattanasakul W., Nakamura S., Hossain M. M., Nakayama H., Uchino T., Shumiya S., Goto N., and Doi K. (1996) Apoptosis in the aged dog brain. Acta. Neuropathol. (Berl) 92, 242–248.

    Article  CAS  Google Scholar 

  25. Foster J. R. (2000) Cell death and cell proliferation in the control of normal and neoplastic tissue growth. Toxicol. Pathol. 28, 441–446.

    Article  PubMed  CAS  Google Scholar 

  26. Kohji T., Hayashi M., Shioda K., Minagawa M., Morimatsu Y., Tamagawa K., and Oda M. (1998) Cerebellar neurodegeneration in human hereditary DNA repair disorders. Neurosci. Lett. 243, 133–136.

    Article  PubMed  CAS  Google Scholar 

  27. Sugawa M., Ikeda S., Kushima Y., Takashima Y., and Cynshi O. (1997) Oxidized low density lipoprotein caused CNS neuron cell death. Brain Res. 761, 165–172.

    Article  PubMed  CAS  Google Scholar 

  28. Heesters M. A., Koudstaal J., Go K. G., and Molenaar W. M. (1999) Analysis of proliferation and apoptosis in brain gliomas: prognostic and clinical value. J. Neurooncol. 44, 255–266.

    Article  PubMed  CAS  Google Scholar 

  29. Mundle S. D., Gao X. Z., Khan S., Gregory S. A., Preisler H. D., and Raza A. (1995) Two in situ labeling techniques reveal different patterns of DNA fragmentation during spontaneous apoptosis in vivo and induced apoptosis in vitro. Anti-cancer. Res. 15, 1895–1904.

    CAS  Google Scholar 

  30. Bodis S., Siziopikou K. P., Schnitt S. J., Harris J. R., and Fisher D. E. (1996) Extensive apoptosis in ductal carcinoma in situ of the breast. Cancer 77, 1831–1835.

    Article  PubMed  CAS  Google Scholar 

  31. Chia S. J., Tang W. Y., Elnatan J., Yap W. M., Goh H. S., and Smith D. R. (2000) Prostate tumours from an Asian population: examination of bax, bcl-2, p53 and ras and identification of bax as a prognostic marker. Br. J. Cancer 83, 761–768.

    Article  PubMed  CAS  Google Scholar 

  32. Yamasaki F., Tokunaga O., and Sugimori H. (1997) Apoptotic index in ovarian carcinoma: correlation with clinicopathologic factors and prognosis. Gynecol. Oncol. 66, 439–448.

    Article  PubMed  CAS  Google Scholar 

  33. Kiyozuka Y., Akamatsu T., Singh Y., Ichiyoshi H., Senzaki H., and Tsubura A. (1999) Optimal prefixation of cells to demonstrate apoptosis by the TUNEL method. Acta. Cytol. 43, 393–399.

    PubMed  CAS  Google Scholar 

  34. Zhang X. and Takenaka I. (2000) Cell proliferation and apoptosis with BCL-2 expression in renal cell carcinoma. Urology 56, 510–515.

    Article  PubMed  CAS  Google Scholar 

  35. Hindermann W., Berndt A., Wunderlich H., Katenkamp D., and Kosmehl H. (1997) Quantitative evaluation of apoptosis and proliferation in renal cell carcinoma. Correlation to tumor subtype, cytological grade according to thoenes-classification and the occurrence of metastasis. Pathol. Res. Pract. 193, 1–7.

    PubMed  CAS  Google Scholar 

  36. Thomas L. B., Gates D. J., Richfield E. K., O’Brien T. F., Schweitzer J. B., and Steindler D. A. (1995) DNA end labeling (TUNEL) in Huntington’s disease and other neuropathological conditions. Exp. Neurol. 133, 265–272.

    Article  PubMed  CAS  Google Scholar 

  37. Jellinger K. A. (2000) Cell death mechanisms in Parkinson’s disease. J. Neural. Transm. 107, 1–29.

    Article  PubMed  CAS  Google Scholar 

  38. He Y., Lee T., and Leong S. K. (2000) 6-Hydroxydopamine induced apoptosis of dopaminergic cells in the rat substantia nigra. Brain Res. 858, 163–166.

    Article  PubMed  CAS  Google Scholar 

  39. Kingsbury A. E., Mardsen C. D., and Foster O. J. (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov. Disord. 13, 877–884.

    Article  PubMed  CAS  Google Scholar 

  40. Kitt C. A. and Wilcox B. J. (1995) Preliminary evidence for neurodegenerative changes in the substantia nigra of Rett syndrome. Neuropediatrics 26, 114–118.

    Article  PubMed  CAS  Google Scholar 

  41. Anderson A. J., Stoltzner S., Lai F., Su J., and Nixon R. A. (2000) Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effect of postmortem tissue archival on TUNEL. Neurobiol. Aging. 21, 511–524.

    Article  PubMed  CAS  Google Scholar 

  42. Ekegren T., Grundstrom E., Lindholm D., and Aquilonius S. M. (1999) Upregulation of Bax protein and increased DNA degradation in ALS spinal cord motor neurons. Acta. Neurol. Scand. 100, 317–321.

    Article  PubMed  CAS  Google Scholar 

  43. Kerrigan L. A., Zack D. J., Quigley H. A., Smith S. D., and Pease M. E. (1997) TUNEL-positive ganglion cells in human primary open-angle glaucoma. Arch. Ophthalmol. 115, 1031–1035.

    PubMed  CAS  Google Scholar 

  44. Smale G., Nichols N. R., Brady D. R., Finch C. E., and Horton W. E.,Jr. (1995) Evidence for apoptotic cell death in Alzheimer’s disease. Exp. Neurol. 133, 225–230.

    Article  PubMed  CAS  Google Scholar 

  45. Davies K. J. (1995) Oxidative stress: the paradox of aerobic life. Biochem. Soc. Symp. 61, 1–31.

    PubMed  CAS  Google Scholar 

  46. Facchinetti F., Dawson V. L., and Dawson T. M. (1998) Free radicals as mediators of neuronal injury. Cell. Mol. Neurobiol. 18, 667–682.

    Article  PubMed  CAS  Google Scholar 

  47. Jenner P. and Olanow C. W. (1998) Understanding cell death in Parkinson’s disease. Ann. Neurol. 44, S72–84.

    PubMed  CAS  Google Scholar 

  48. Nunomura A., Perry G., Pappolla M. A., Wade R., Hirai K., Chiba S., and Smith M. A. (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J. Neurosci. 19, 1959–1964.

    PubMed  CAS  Google Scholar 

  49. Mecocci P., MacGarvey U., and Beal M. F. (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann. Neurol. 36, 747–751.

    Article  PubMed  CAS  Google Scholar 

  50. Mecocci P., Polidori M. C., Ingegni T., Cherubini A., Chionne F., Cecchetti R., and Senin U. (1998) Oxidative damage to DNA in lymphocytes from AD patients. Neurology 51, 1014–1017.

    PubMed  CAS  Google Scholar 

  51. Zhang J., Perry G., Smith M. A., Robertson D., Olson S. J., Graham D. G., and Montine T. J. (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am. J. Pathol. 154, 1423–1429.

    Article  PubMed  CAS  Google Scholar 

  52. Browne S. E., Bowling A. C., MacGarvey U., Baik M. J., Berger S. C., Muqit M. M., Bird E. D., and Beal M. F. (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41, 646–653.

    Article  PubMed  CAS  Google Scholar 

  53. Polidori M. C., Mecocci P., Browne S. E., Senin U., and Beal M. F. (1999) Oxidative damage to mitochondrial DNA in Huntington’s disease parietal cortex. Neurosci. Lett. 272, 53–56.

    Article  PubMed  CAS  Google Scholar 

  54. Ferrante R. J., Browne S. E., Shinobu L. A., Bowling A. C., Baik M. J., MacGarvey U., Kowall N. W., Brown R. H.,Jr., and Beal M. F. (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69, 2064–2074.

    Article  PubMed  CAS  Google Scholar 

  55. Bogdanov M., Brown R. H., Matson W., Smart R., Hayden D., O’Donnell H., Flint Beal M., and Cudkowicz M. (2000) Increased oxidative damage to DNA in ALS patients [In Process Citation]. Free Radic. Biol. Med. 29, 652–658.

    Article  PubMed  CAS  Google Scholar 

  56. Goyal V. K. (1982) Lipofuscin pigment accumulation in human brain during aging. Exp. Gerontol. 17, 481–487.

    Article  PubMed  CAS  Google Scholar 

  57. Stojanovic A., Roher A. E., and Ball M. J. (1994) Quantitative analysis of lipofuscin and neurofibrillary tangles in the hippocampal neurons of Alzheimer disease brains. Dementia 5, 229–233.

    PubMed  CAS  Google Scholar 

  58. Usachev Y. M., Khammanivong A., Campbell C., and Thayer S. A. (2000) Particle-mediated gene transfer to rat neurons in primary culture. Pflugers Arch. 439, 730–738.

    Article  PubMed  CAS  Google Scholar 

  59. Nunomura A., et al. (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J. Neurosci. 19, 1959–1964.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Kalyuzhny, A.E. (2002). Simultaneous In Situ Detection of DNA Fragmentation and RNA/DNA Oxidative Damage Using TUNEL Assay and Immunohistochemical Labeling for 8-Hydroxy-2′-Deoxyguanosine (8-OHdG). In: Didenko, V.V. (eds) In Situ Detection of DNA Damage. Methods in Molecular Biology, vol 203. Humana Press. https://doi.org/10.1385/1-59259-179-5:219

Download citation

  • DOI: https://doi.org/10.1385/1-59259-179-5:219

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-952-0

  • Online ISBN: 978-1-59259-179-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics