Skip to main content

Dendritic Cell Generation from Highly Purified CD14+Monocytes

  • Protocol
Dendritic Cell Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 64))

Abstract

Dendritic cells (DC) play a pivotal role in the function of the immune system, for they are the primary antigen-presenting cells (APC) in the activation of naive T-lymphocyte responses (1). Recent studies have uncovered complexity in the DC lineage with several subsets, functions, and maturational stages. Although it is generally accepted that human DC derive from hematopoietic progenitor cells (2-9), it is not clear at present whether DC cells and their precursors represent a separate hematopoietic lineage or whether DC should be seen as specialized macrophages with particular morphological, molecular, and functional features. Several lines of evidence point to DC and monocytes/ macrophages being offspring of the same CD34+ hematopoietic progenitor cell (3-5,12-14, and reviewed in ([10,11].) DC committed precursor cells have also been identified in peripheral blood (15-18).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinman, R. M. (1991) The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271ā€“296.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Volc-Platzer, B., Stingl, G., Wolff, K., Hinterberger, W., and Schnedl, W. (1984) Cytogenetic identification of allogeneic epidermal Langerhans cells in a bone marrow-graft recipient. N. Engl. J. Med. 310, 1123,1124.

    PubMedĀ  CASĀ  Google ScholarĀ 

  3. Caux, C., Dezutter-Dambuyant, C., Schmitt, D., and Banchereau, J. (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360, 258ā€“261.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Reid, C., Fryer, P., Clifford, C., Kirk, A., Tikerpae, J., and Knight, S. (1990) Identification of hematopoietic progenitors of macrophages and dendritic Langerhans cells (DL-CFU) in human marrow and peripheral blood. Blood 76, 1139ā€“1149.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Reid, C., Stackpoole, A., Meager, A., and Tikerpace, J. (1992) Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J. Immunol. 149, 2681ā€“2688.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Santiago-Schwarz, F., Divaris, N., Kay, C., and Carsons, S. (1993) Mechanisms of tumor necrosis factor and granulocyte-macrophage colony-stimulating factor-induced dendritic cell development. Blood 82, 3019ā€“3028.

    PubMedĀ  CASĀ  Google ScholarĀ 

  7. Strunk, D., Rappersberger, K., Egger, C., et al. (1996) Generation of human dendritic cells/Langerhans cells from circulating CD34+hematopoietic progenitor cells. Blood 87, 435ā€“445.

    Google ScholarĀ 

  8. Young, J., Szabolcs, P., and Moore, M. (1995) Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are exprandend by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J. Exp. Med. 182, 1111ā€“1120.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Galy, A., Travis, M., Cen, D., and Chen, B. (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459ā€“473.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Peters, J. H., Gieseler, R., Thiele, B., and Steinbach, F. (1996) Dendritic cells: From ontogenetic orphans to myelomonocytic descendants. Immunol. Tod 17, 273ā€“278.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Reid, C. D. L. (1997) The dendritic cell lineage in hematopoiesis. Br. J. Haematol. 96, 217ā€“223.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Caux, C., Vanbervliet, B., Massacrier, C., et al. (1995) Characterization of human CD34+ derived dendritic/Langerhans cells (D-Lc). In Dendritic cells in fundamental and clinical immunology. (Banchereau, J. and Schmitt, D., eds.) Plenum Press, New York, pp. 1ā€“15.

    Google ScholarĀ 

  13. Mackensen, A., Herbst, B., Kƶhler, G., et al. (1995) Delineation of the dendritic cell lineage by generating large numbers of Birbeck granule-positive Langerhans cells from human peripheral blood progenitor cells in vitro. Blood 86, 2699ā€“2707.

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Szabolcs, P., Moore, M., and Young, J. (1995) Expansion of immunostimulatory dendirtic cells among the myeloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor and TNF-Ī±. J. Immunol. 154, 5851ā€“5861.

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Thomas, R. L., Davis, L. S., and Lipsky, P. E. (1993) Isolation and characterization of human peripheral blood dendritic cells. J. Immunol. 150, 821ā€“834.

    PubMedĀ  CASĀ  Google ScholarĀ 

  16. Oā€™Doherty, U., Peng, M., Gezelter, S., et al. (1994) Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82, 487ā€“493.

    CASĀ  Google ScholarĀ 

  17. Thomas, R., and Lipsky, P. E. (1994) Human peripheral blood dendritic cell subsets-isolation and characterization of precursor and mature antigen-presenting cells. J. Immunol. 153, 4016ā€“4028.

    PubMedĀ  CASĀ  Google ScholarĀ 

  18. Weissman, D., Li, Y., Ananworanich, J., et al. (1995) Three populations of cells with dendritic morphology exist in peripheral blood, only one of which is 296 infectible with human immunodeficiency virus type I. Proc. Natl. Acad. Sci. USA 92, 826ā€“830.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Rossi, G., Heveker, N., Thiele, B., Gelderblom, H., and Steinbach, F. (1992) Development of a Langerhans cell phenotype from peripheral blood monocytes. Immunol. Lett. 31, 189ā€“198.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Kasinrerk, W., Baumruker, T., Majdic, O., Knapp, W., and Stockinger, H. (1993) CD1 molecule expression on human monocytes induced by granulocyte-macro-phage colony-stimulating factor. J. Immunol. 150, 579ā€“584.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Porcelli, S., Morita, C. T., and Brenner, M. B. (1992) CD1b restricts the response of human CD4-CD8- T lymphocytes to a microbial antigen. Nature 360, 593ā€“597.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Romani, N., Gruner, S., Brang, D., et al. (1994) Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83ā€“93.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Sallusto, F. and Lanzavecchia, A. (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulationg factor plus interleukin 4 and downregulated by tumor necorsis factor alpha. J. Exp. Med. 179, 1109ā€“1118.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Akagawa, K. S., Takasuka, N., Nozaki, Y., et al. (1996) Generation of CD1+RelB+dendritic cells and tartrate-resistant acid phosphatase positive osteoclast-like multinucleated giant cells from human monocytes. Blood 88, 4029ā€“4039.

    PubMedĀ  CASĀ  Google ScholarĀ 

  25. Kiertscher, S., and Roth, M. (1996) Human CD14+leukocytes acquire the phenotype and function of antigen-presenting dendritic cells when cultured in GM-CSF andIL-4. J. Leuk. Biol. 59, 208ā€“218.

    CASĀ  Google ScholarĀ 

  26. Pickl, W. F., Majdic, O., Kohl, P., et al. (1996) Molecular and functional characteristics of dendritic cells generated from highly purified CD14+peripheral blood monocytes. J. Immunol. 157, 2001ā€“2011.

    Google ScholarĀ 

  27. Zhou, L.-J. and Tedder, T. (1996) CD14+blood monocytes can differentiate into functionally mature CD83+dendritic cells. Proc. Natl. Acad. Sci. USA 93, 2588ā€“2592.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Chapuis, F., Ronsenzwajg, M., Yagello, M., Ekamn, M., Biberfeld, P., and Gluckman, J. C. (1997) Differentiation of human dendritic cells from nonproliferating progenitors in human blood. Eur. J. Immunol. 27, 431.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Bender, A., Sapp, M., Schuler, G., Steinman, R. M., and Bhardwaj, N. (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods 196, 121ā€“135.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Romani, N., Reider, D., Heuer, M., et al. (1996) Generation of mature dendritic cells from human blood: an improved method with special regard to clinical applicability. J. Immunol. Methods 196, 137ā€“151.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Boyum, A. (1968) Isolation of leucocytes from human blood-further observations. Scand. J. Clin. Lab. Invest. 21, 31ā€“50.

    CASĀ  Google ScholarĀ 

  32. Miltenyi, S., MĆ¼ller, W., Weichel, W., and Radbruch, A. (1990) High gradient magnetic cell separation with MACS. Cytometry 11, 231ā€“238.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Schuler, G. and Steinman, R. (1997) Dendritic cells as adjuvans for immune-mediated resistance to tumors. J. Exp. Med. 186, 1183ā€“1187.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Pickl, W.F., Majdic, O., Knapp, W. (2001). Dendritic Cell Generation from Highly Purified CD14+Monocytes. In: Robinson, S.P., Stagg, A.J., Knight, S.C. (eds) Dendritic Cell Protocols. Methods in Molecular Medicineā„¢, vol 64. Humana Press. https://doi.org/10.1385/1-59259-150-7:283

Download citation

  • DOI: https://doi.org/10.1385/1-59259-150-7:283

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-584-3

  • Online ISBN: 978-1-59259-150-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics