Skip to main content

High Affinity Scorpion Toxins for Studying Potassium and Sodium Channels

  • Protocol
Ion Channel Localization

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

High Affinity Scorpion Toxins for Studying Potassium and Sodium Channels

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Tsetlin, V. (1999) Snake a-neurotoxins and other “three finger” proteins. Eur. J. Biochem. 264, 281–286.

    Article  PubMed  CAS  Google Scholar 

  2. Possani, L. D., Becerril, B., Delepierre, M., and Tytgat, J. (1999) Scorpion toxins specific for Na+-channels. Eur. J. Biochem. 264, 287–300.

    Article  PubMed  CAS  Google Scholar 

  3. MacIntosh, J. M., Olivera, B. M., and Cruz, L. J. (1999) Conus peptides as probes for ion channels. Methods Enzymol. 294, 605–624.

    Article  Google Scholar 

  4. Kem, W., Pennington, M. W., and Norton, R. S. (1999) Sea anemone toxins as templates for the desighn of immunosuppressant drugs. Perspectives Drug Disc. Design 15/16, 111–129.

    Article  CAS  Google Scholar 

  5. Grishin, E. (1999) Polypeptide neurotoxins from spider venoms. Eur. J. Biochem. 264, 276–280.

    Article  PubMed  CAS  Google Scholar 

  6. Garcia, M. L., Hanner, M., Knaus, H. G., Koch, R., Schmalhofer, W., Slaughter, R. S., and Kaczorowski, G. J. (1997) Pharmacology of potassium channels. Adv. Pharmacol. 39, 425–471.

    Article  PubMed  CAS  Google Scholar 

  7. Catterall, W. A. (1980) Neurotoxins that act on voltage sensitive sodium channels in excitable membranes. Annu. Rev. Pharmacol. Toxicol. 20, 15–43.

    Article  PubMed  CAS  Google Scholar 

  8. Gordon, D., Savarin, P., Gurevitz, M., and Zinn-Justin, S. (1998) Functional anatomy of scorpion toxins affecting sodium channels. J. Toxicol. Toxin Rev. 17(2), 131–159.

    CAS  Google Scholar 

  9. Possani, L. D., Selisko, B., and Gurrola, G. B. (1999) Structure and function of scorpion toxins affecting K+-channel. Perspectives Drug Disc. Design 15/16, 15–40.

    Article  Google Scholar 

  10. Tytgat, J., Chandy, G., Garcia, M. L., Gutman, G. A., Martin-Eauclaire, M. F., van derWalt, J. J., and Possani, L. D. (1999) A unified nomenclature for shortchain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. Trends Physiol. Sci. 20, 444–447.

    Article  CAS  Google Scholar 

  11. Debin, J. A., Maggio, J. E., and Strichartz, G. R. (1993) Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 264 (Cell Physiol. 33) C361–C369.

    PubMed  CAS  Google Scholar 

  12. Valdivia, H. H. and Possani, L. D. (1998) Peptide toxins as probes of ryanodine receptor. Trends Cardiovascular Med. 8, 111–118.

    Article  CAS  Google Scholar 

  13. D∫uze, G., Zamudio, F., Gomez-Lagunas, F., and Possani, L. D. (1999) A novel K+ channel blocking toxin from Tityus discrepans scorpion venom. FEBS Lett. 456, 146–148.

    Article  Google Scholar 

  14. Gurrola, G. B., Rosati, B., Roccheti, M., Pimienta, G., Zaza, A., Arcangeli, A., et al. (1999) A toxin to nervous, cardiac, and endocrine ERG K+ channels isolated from Centruroides noxius scorpion venom. FASEB J. 13, 953–962.

    PubMed  CAS  Google Scholar 

  15. Chuang, R. S. I., Jaffe, H., Cribbe, L., Perez-Reyes, E., and Swartz, K. J. (1998) Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nature Neurosci. 1, 668–674.

    Article  PubMed  CAS  Google Scholar 

  16. Vazquez, A., Tapia, J. V., Eliason, W. K., Martin, B. M., Lebreton, F., Delepierre, M., et al. (1995) Cloning and characterization of the cDNAs encoding Na+ channel specific toxins 1 and 2 of the scorpion Centruroides noxius Hoffmann. Toxicon 33, 1161–1170.

    Article  PubMed  CAS  Google Scholar 

  17. Dauplais, M., Gilquin, B., Possani, L. D., Gurrola-Briones, G., Roumestand, C., and Menez, A. (1995) Determination of the three-dimensional solution structure of noxiustoxin: analysis of structural differences with related shortchain scorpion toxins. Biochemistry 34, 16,563–16,573.

    Article  PubMed  CAS  Google Scholar 

  18. Lebreton, F., Ramirez, A. N., Balderas, C., Possani L. D., and Delepierre, M. (1994) Primary and NMR three-dimensional structure determination of a novel crustacean toxin from the venom of the scorpion Centruroides limpidus limpidus Karsch. Biochemistry 33(37), 11,135–11,149.

    Article  PubMed  CAS  Google Scholar 

  19. Schütte, C. G., Lemm, T., Glombitza, G. J., and Sandhoff, K. (1998) Complete localization of disulfide bonds in GM2 activator protein. Protein Sci. 7, 1039–1045.

    Article  PubMed  Google Scholar 

  20. Jover, E., Couraud, F., and Rochat, H. (1980) Two types of scorpion neurotoxins characterized by their binding to two separate receptor sites on rat brain synaptosomes. Biochem. Biophys. Res. Comm. 95(4), 1607–1614.

    Article  PubMed  CAS  Google Scholar 

  21. Zlotkin, E., Gurevitz, M., Fowler, E., and Adams, M. E. (1993) Depressant insect selective neurotoxins from scorpion venom: chemistry, action and gene cloning. Arch. Insect Biochem. Physiol 22, 55–73.

    Article  PubMed  CAS  Google Scholar 

  22. Kobayashi, Y., Takashima, H., Tamaoki, H., Kiogoku, Y., Lambert, P., Kuroda, H., et al. (1991) The cysteine-stabilized alpha-helix: a common structural motif of ion-channel blocking neurotoxic peptides. Biopolymers 31, 1213–1220.

    Article  PubMed  CAS  Google Scholar 

  23. Menez, A., Bontems, F., Roumestand, C., Gilquin, B., and Toma, F. (1992) Structural basis for functional diversity of animal toxins. Proc. Royal Soc. Edinburgh 99B, 83–103.

    Google Scholar 

  24. Oren, D. A., Froy, O., Amit, E., Kleinberger-Doron, V., Gurevitz, M., and Shaanan, B. (1998) An excitatory scorpion toxin with a distinctive feature: an additional helix at the C-terminus and its implications for interaction with insect sodium channels. Structure 6, 10,995–11,003.

    Article  Google Scholar 

  25. Fontecilla-Camps, J. C., Almassy, R. J., Suddath, F. L., Watt, D. D., and Bugg, C. E. (1980) Three-dimensional structure of a protein from scorpion venom: a new structural class of neurotoxins. Proc. Natl. Acad. Sci. USA 77(11), 6496–6500.

    Article  PubMed  CAS  Google Scholar 

  26. Polikarpov, I., Matilde Jr M. S., Marangoni, S., Toyama, M. H., and Teplyakov, A. (1999) Crystal structure of neurotoxin Ts1 from tityus serrulatus provides insights into the specificity and toxicity of scorpion toxins. J. Mol. Biol. 290, 175–184.

    Article  PubMed  CAS  Google Scholar 

  27. Darbon, H., Weber, C., and Braun W. (1991) Two-dimensional 1H nuclear magnetic resonance study of AaH IT, an anti-insect toxin from the scorpion Androctonus australis Hector. Sequential resonance assignments and folding of the polypeptide chain. Biochemistry 30(7), 1836–1845.

    Article  PubMed  CAS  Google Scholar 

  28. Pintar, A., Possani, L. D., and Delepierre, M. (1999) Solution structure of toxin 2 from Centruroides noxius Hoffmann, a β scorpion neurotoxin acting on sodium channel. J. Mol. Biol. 287, 359–365.

    Article  PubMed  CAS  Google Scholar 

  29. Fontecilla-Camps, J. C., Almassy, R. J., Suddath, F. L., and Bugg, C. E. (1982) The three-dimensional structure scorpion neurotoxins. Toxicon 20, 1–7.

    Article  PubMed  CAS  Google Scholar 

  30. Fontecilla-Camps, J. C, Habersetzer-Rochat, C., and Rochat, H. (1988) Orthorhombic crystals and three-dimensional structure of the potent toxin II from the scorpion Androctonus australis Hector. Proc. Natl. Acad. Sci. USA 85, 7443–7447.

    Article  PubMed  CAS  Google Scholar 

  31. He, X-L, Li, H. M., Zeng, Z. H., Liu, X-Q, Wang, M., and Wang, D. C. (1999) Crystal structure of two α-like scorpion toxins: non proline cis peptide bonds and implications for new binding site selectivity on the sodium channel. J. Mol. Biol. 292, 125–135.

    Article  PubMed  CAS  Google Scholar 

  32. Delepierre, M., Prochnika-Chalufour, A., and Possani, L. D. (1997) A novel potassium channel blocking toxin from the scorpion Pandinus imperator: a 1H NMR analysis using a nano-NMR probe. Biochemistry 36, 2649–2658.

    Article  PubMed  CAS  Google Scholar 

  33. Park, C. S. and Miller, C. (1992) Mapping function to structure in a channelblocking peptide: electrostatic mutants of charybdotoxin. Biochemistry 31, 7749–7755.

    Article  PubMed  CAS  Google Scholar 

  34. Bontems, F., Roumestand, C., Gilquin, B., Menez, A., and Toma, F. (1991) Refined structure of charybdotoxin: common motifs in scorpion toxins and insect defensins. Science 254, 1521–1523.

    Article  PubMed  CAS  Google Scholar 

  35. Bonmatin, J. M., Bonnat, J. L., Gallet, X., Vovelle, F., Ptak, M., Reichhart, J. M., et al. (1992) Two-dimensional 1H NMR study of recombinant insect defensin A in water: resonance assignments, secondary structure and global folding. J. Biomol. NMR 2, 235–256.

    Article  PubMed  CAS  Google Scholar 

  36. Krezel, A. M., Kasibhatla, C., Hidalgo, P., MacKinnon, R., and Wagner, G. (1995) Solution structure of the potassium channel inhibitor agitoxin 2: caliper for probing channel geometry. Protein Sci. 4, 1478–1489.

    Article  PubMed  CAS  Google Scholar 

  37. Delepierre, M., Prochnika-Chalufour, A., Boisbouvier, J., and Possani, L. D. (1999) Pi7, an orphan peptide from the scorpion Pandinus imperator: a 1H NMR analysis using a nano-NMR probe. Biochemistry 38, 16,756–16,765.

    Article  PubMed  CAS  Google Scholar 

  38. Becerril, B., Marangoni, S., and Possani, L. D. (1997) Toxins and genes isolated from scorpions of the genus Tityus. Toxicon 35, 821–835.

    Article  CAS  Google Scholar 

  39. Fernandez, I., Romi, R., Szendeffy, S., Martin-Eauclaire, M. F., Rochat, H., Van Rietschoten, J., et al. (1994) Kaliotoxin (1-37) shows structural differences with related potassium channel blockers. Biochemistry 33, 14,256–14,263.

    Article  PubMed  CAS  Google Scholar 

  40. Adam, K. R., Schmidt, H., Stampfli, R., and Weiss, C. (1966) The effect of scorpion venom on single myelinated nerve fibers of the frog. Br. J. Pharmacol. 26, 666–677.

    CAS  Google Scholar 

  41. Koppenhoeffer, E. and Schmidt, H. (1968) Die wirkung von skorpiongift auf die ionenstrome des Ranvierschen schnurrings. II. Unvollstandige natrium inaktivierung. Pfluegers Arch. Ges. Physiol. 303, 150–161.

    Article  Google Scholar 

  42. Meves, H., Rubly, N., and Watt, D. D. (1982) Effect of toxins from the venom of the scorpion Centruroides sculpturatus on the Na currents of the node of Ranvier. Pfluegers Arch. 393, 56–62.

    Article  CAS  Google Scholar 

  43. Nonner, W. (1979) Effects of Leiurus scorpion venom on the “gating” current in myelinated nerve. Adv. Cytopharmacol. 3, 345–352.

    PubMed  CAS  Google Scholar 

  44. Benoit, E. and Dubois, J. M. (1987) Properties of maintained sodium current induced by a toxin from Androctonus scorpion in frog node of Ranvier. J. Physiol. (Lond.) 383, 93–114.

    CAS  Google Scholar 

  45. Strichartz, G. R. and Wang, G. K. (1986) Rapid voltage-dependent dissociation of scorpion alpha-toxins coupled to Na channel inactivation in amphibian myelinated nerves. J. Gen. Physiol. 88, 413–435.

    Article  PubMed  CAS  Google Scholar 

  46. Meves, H., Simard, J. M., and Watt, D. D. (1986) Interactions of scorpion toxins with the sodium channel. Ann. NY Acad. Sci. 479, 113–132.

    Article  PubMed  CAS  Google Scholar 

  47. Katz, N. L. and Edwards, C. (1972) The effect of scorpion venom on the neuromuscular junction of the frog. Toxicon 10, 133–137.

    Article  PubMed  CAS  Google Scholar 

  48. Cahalan, M. D. (1975) Modification of sodium channel gating in frog myelinated nerve fibers by Centruroides sculpturatus scorpion venom. J. Physiol. (Lond.) 244, 511–534.

    CAS  Google Scholar 

  49. Couraud, F., Jover, E., Dubois, J. M., and Rochat, H. (1982) Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon 20(1), 9–16.

    Article  PubMed  CAS  Google Scholar 

  50. Hue, S. L., Meves, H., Rubly, N., and Watt, D. D. (1983) A quantitative study of the action of Centruroides sculpturatus toxins III and IV on the Na currents of the node of Ranvier. Pfluegers Arch. 397, 90–99.

    Article  Google Scholar 

  51. Vijverberg, H. P., Pauron, D., and Lazdunski, M. (1984) The effect of Tityus serrulatus scorpion toxin gamma on Na channels in neuroblastoma cells. Pfluegers Arch. 401, 297–303.

    Article  CAS  Google Scholar 

  52. Cestele, S., Qu, Y., Rogers, J. C., Rochat, H., Scheuer, T., and Catterall, W. A. (1998) Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop domain II. Neuron 21, 919–931.

    Article  PubMed  CAS  Google Scholar 

  53. Wang, G. W. and Strichartz, G. (1982) Simultaneous modifications of sodium channel gating by two scorpion toxins. Biophys. J. 40, 174–179.

    Article  Google Scholar 

  54. Chandy, K. G. and Gutman, G. A. (1995) Voltage-gated potassium channel genes, in Ligand-and Voltage-Gated Ion Channels (North, R. A., ed.), CRC Press, Boca Raton, FL, pp. 1–71.

    Google Scholar 

  55. Kaczorowski, G.J., Knaus, H. G., Leonard, R. J., McManus, O. B., and Garcia, M. L. (1996) High conductance calcium-activated potassium channels; structure, pharmacology and function. J. Biomembr. Bioenerg. 28, 253–265.

    Google Scholar 

  56. Goldstein, S. A. N. and Miller, C. (1993) Mechanism of charybdotoxin block of a voltage-gated K channel. Biophys. J. 65, 1613–1619.

    Article  PubMed  CAS  Google Scholar 

  57. Goldstein, S. A. N., Pheasant, D. J., and Miller, C. (1994) The charybdotoxin receptor of a Shaker K channel: peptide and channel residues mediating molecular recognition. Neuron 12, 1377–1388.

    Article  PubMed  CAS  Google Scholar 

  58. Becerril, B., Corona, M., Garcia, C., Bolivar, F., and Possani, L. D. (1995) Cloning of genes encoding scorpion toxins: an interpretative review. J. Toxicol. Toxin Rev. 14, 339–357.

    CAS  Google Scholar 

  59. Froy, O., Sagiv, T., Poreh, M., Urbach, D., Zilberberg, N., and Gurevitz, M. (1999) Dynamic diversification from a putative common ancestor of scorpion toxins affecting, sodium, potassium and chloride channels. J. Mol. Evol. 48, 187–196.

    Article  PubMed  CAS  Google Scholar 

  60. Martin-Eauclaire, M. F., Ceard, B., Ribeiro, A. M., Diniz, C. R., Rochat, H., and Bougis, P. E. (1994) Biochemical, pharmacological and genomic characterization of TsIV, an alpha-toxin from the venom of the South American scorpion Tityus serrulatus. FEBS Lett. 342, 181–184.

    Article  CAS  Google Scholar 

  61. Legros, C., Bougis, P. E. and Martin-Eauclaire, M. F. (1997) Genomic organization of the KTX2 gene, encoding a “short” scorpion toxin active on K+ channels. FEBS Lett. 402, 45–49.

    Article  PubMed  CAS  Google Scholar 

  62. Wu, J. J., Dai, L., Lan, Z. D., and Chi, C. W. (1999) Genomic organization of three neurotoxins active on small conductance Ca2+-activated potassium channels from the scorpion Buthus martensii Karsch. FEBS Lett. 452, 360–364.

    Article  PubMed  CAS  Google Scholar 

  63. Selisko, B., Garcia, C., Becerril, B., Gómez-Lagunas, F., Garay, C., and Possani, L. D. (1998) Cobatoxins 1 and 2 from Centruroides noxius Hoffmann constitute a subfamily of potassium-channel-blocking scorpion toxins. Eur. J. Biochem. 254, 468–479.

    Article  PubMed  CAS  Google Scholar 

  64. Zhu, S., Li, W., Zeng, X., Jiang, D., Mao, X., and Liu, H. (1999) Molecular cloning and sequencing of two “short chain” and two “long chain” K+ channelblocking peptides from the Chinese scorpion Buthus martensii Karsch. FEBS Lett. 457, 509–514.

    Article  PubMed  CAS  Google Scholar 

  65. Legros, C., Ceard, B., Bougis, P. E., and Martin-Eauclaire, M. F. (1998) Evidence for a new class of scorpion toxins active against K+ channels. FEBS Lett. 431, 375–380.

    Article  PubMed  CAS  Google Scholar 

  66. Schweitz, H. and Moinier, D, (1999) Mamba toxins. Perspectives Drug Disc. Design 15/16, 83–110.

    Article  Google Scholar 

  67. Craig, A. G., Bandyopadhyay, P., and Olivera, B. (1999) Post-translationally modified neuropeptides from Conus venoms. Eur. J. Biochem. 264, 271–275.

    Article  PubMed  CAS  Google Scholar 

  68. Olivera, B. M., Rivier, J., Clark, C., Ramilo, C. A., Corpuz, G. P., Abogadie, F. C., et al. (1990) Diversity of Conus neuropeptide. Science 249, 257–263.

    Article  PubMed  CAS  Google Scholar 

  69. Beress, L., Beress, R., and Wunderer, G. (1975) Isolation and characterization of three polypeptides with neurotoxic activity from Anemonia sulcata. FEBS Lett. 50, 311–314.

    CAS  Google Scholar 

  70. Swartz, K. J. and MacKinon, R. (1997) Hanatoxin modifies the gating of a voltage-dependent K+-channel through multiple binding sites. Neuron 18, 665–673.

    Article  PubMed  CAS  Google Scholar 

  71. Newcomb, R., Szoke, B., Palma, A., Wang, G., Chen Xh, Hopkins, W., et al. (1998) Selective peptide antoganist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry 37, 15,353–15,362.

    CAS  Google Scholar 

  72. Carabez-Trejo, A. and Possani, L. D. (1982) Electron microscopic evidence for scorpion toxin binding to synapses of rat brain cortex. Neurosci. Lett. 32, 103–108.

    Article  CAS  Google Scholar 

  73. Zamudio, F. Z., Gurrola, G. B., Arévalo, C., Sreekumar, R., Walker, J. W., Valdivia, H. H., and Possani, L. D. (1997) Primary structure and synthesis of Imperatoxin A (IpTxa), a peptide activator of Ca2+ release channels/ryanodine receptors. FEBS Lett. 405, 385–389.

    Article  PubMed  CAS  Google Scholar 

  74. Gurrola, G. B. and Possani, L. D. (1995) Structural and functional features of noxiustoxin: a K+ channel blocker. Biochem. Mol. Biol. Int. 37, 527–535.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Possani, L.D., Becerril, B., Tytgat, J., Delepierre, M. (2001). High Affinity Scorpion Toxins for Studying Potassium and Sodium Channels. In: Lopatin, A.N., Nichols, C.G. (eds) Ion Channel Localization. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-118-3:145

Download citation

  • DOI: https://doi.org/10.1385/1-59259-118-3:145

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-833-2

  • Online ISBN: 978-1-59259-118-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics