Skip to main content

An Approach Combining Rapid cDNA Amplification and Chemical Synthesis for the Identification of Novel, Cathelicidin-Derived, Antimicrobial Peptides

  • Protocol
Antibacterial Peptide Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 78))

Abstract

Host defense in mammals involves a cooperative effort by a variety of antimicrobial peptides (1), which are produced by both phagocyte precursors and some epithelia. They are called on to combat invading pathogens at sites of infection and to help protect mucosal surfaces. Although sharing some common properties, such as a high content of basic residues, these peptides vary widely in both size and primary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boman, H. G. (1995) Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61–92.

    Article  PubMed  CAS  Google Scholar 

  2. Ganz, T. (1994) Biosynthesis of defensins and other antimicrobial peptides, in Antimicrobial Peptides, Ciba Foundation Symposium 186 (Boman, H. G., Marsh, J., and Goode, J. L., eds.), J. Wiley & Sons, Chichester, UK, pp. 77–90.

    Google Scholar 

  3. Zanetti, M., Litteri, L., Gennaro, R., Horstmann, H., and Romeo, D. (1990) Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules. J. Cell Biol. 111, 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  4. Zanetti, M., Gennaro, R., and Romeo, D. (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374, 1–5.

    Article  PubMed  CAS  Google Scholar 

  5. Bagella, L., Scocchi, M., and Zanetti, M. (1995) cDNA sequences of three sheep myeloid cathelicidins. FEBS Lett. 376, 225–228.

    Article  PubMed  CAS  Google Scholar 

  6. Mahoney, M. M., Lee, A. Y., Brezinski-Callguri, D. J., and Huttner, K. M. (1995) Molecular analysis of the sheep cathelin family reveals a novel antimicrobial peptide. FEBS Lett. 377, 519–522.

    Article  PubMed  CAS  Google Scholar 

  7. Skerlavaj, B., Gennaro, R., Bagella, L., Merluzzi, L., Risso, A., and Zanetti, M. (1996) Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J. Biol. Chem. 271, 28,375–28,381.

    Article  PubMed  CAS  Google Scholar 

  8. Popsueva, A. E., Zinovjeva, M. V., Visser, J. W. M., Zijlmans, M. J. M., Fibbe, W. E., and Belyavsky, A. V. (1996) A novel murine cathelin-lake protein expressed in bone marrow. FEBS Lett. 391, 5–8.

    Article  PubMed  CAS  Google Scholar 

  9. Romeo, D., Skerlavaj, B., Bolognesi, M., and Gennaro, R. (1988) Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J. Biol. Chem. 263, 9573–9575.

    PubMed  CAS  Google Scholar 

  10. Gennaro, R., Skerlavaj, B., and Romeo, D. (1989) Purification, composition, and activity of two bactenecins, antimicrobial peptides of bovine neutrophils. Infect Immun. 57, 3142–3146.

    PubMed  CAS  Google Scholar 

  11. Agerberth, B., Lee, J.-Y., Bergman, T., Carlquist, M., Boman, H. G., Mutt, V., and Jornvall, H. (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur. J. Biochem. 202, 849–854.

    Article  PubMed  CAS  Google Scholar 

  12. Selsted, M. E., Novotny, M. J., Morris, W. L., Tang, Y-Q., Smith, W., and Cullor, J. S. (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267, 4292–4295.

    PubMed  CAS  Google Scholar 

  13. Kokryakov, V. N., Harwig, S. S. L., Panyutich, E. A., Shevchenko, A. A., Aleshina, G. M., Shamova, O. V., Korneva, H. A., and Lehrer, R. I. (1993) Protegrins, leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 327, 231–236.

    Article  PubMed  CAS  Google Scholar 

  14. Larrick, J. W., Morgan, J. G., Palings, I., Hirata, M., and Yen, M. H. (1991) Complementary DNA sequence of rabbit CAP18, a unique lipopolysaccharide binding protein. Biochem. Biophys. Res. Commun. 179, 170–175.

    Article  PubMed  CAS  Google Scholar 

  15. Pungercar, J., Strukelj, B., Kopitar, G., Renko, M., Lenarcic, B., Gubensek, F., and Turk, V. (1993) Molecular cloning of a putative homolog of proline/arginine-rich antimicrobial peptides from porcine bone marrow. FEBS Lett. 336, 284–288.

    Article  PubMed  CAS  Google Scholar 

  16. Storici, P., Scocchi, M., Tossi, A. Gennaro, R., and Zanetti, M. (1994) Chemical synthesis and biological activity of a novel antimicrobial peptide deduced from a pig myeloid cDNA. FEBS Lett. 337, 303–307.

    Article  PubMed  CAS  Google Scholar 

  17. Zanetti, M., Storici, P., Tossi, A., Scocchi, M., and Gennaro, R. (1994) Molecular cloning and chemical synthesis of a novel antimicrobial peptide derived from pig myeloid cells. J. Biol. Chem. 269, 7855–7858.

    PubMed  CAS  Google Scholar 

  18. Tossi, A., Scocchi, M., Zanetti, M., Storici, P., and Gennaro, R. (1995) Porcine myeloid antimicrobial peptide, PMAP-37, a novel antimicrobial peptide from pig myeloid cells cDNA cloning, chemical synthesis and activity. Eur. J. Biochem. 228, 941–946.

    Article  PubMed  CAS  Google Scholar 

  19. Agerberth, B., Gunne, H., Odeberg, J., Kogner, P., Boman, H. G., and Gudmundsson, G. H. (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc. Natl. Acad. Sci. (USA) 92, 195–199.

    Article  CAS  Google Scholar 

  20. Larrick, J. W., Hirata, M., Balint, R. F., Lee, J., Zhong, J., and Wright, S. C. (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect. Immun. 63, 1291–1297.

    PubMed  CAS  Google Scholar 

  21. Tossi, A., Scocchi, M., Skerlavaj, B., and Gennaro, R. (1994) Identification and characterization of a primary antimicrobial domain in CAP 18, a lipopolysaccharide binding protein from rabbit leukocytes, FEBS Lett. 339, 108–112.

    Article  PubMed  CAS  Google Scholar 

  22. Storici, P., Del Sal, G., Schneider, C., and Zanetti, M. (1992) cDNA sequence analysis of an antibiotic dodecapeptide from neutrophils. FEBS Lett. 314, 187–190.

    Article  PubMed  CAS  Google Scholar 

  23. Storici, P. and Zanetti, M. (1993) A novel cDNA sequence encoding a pig antimicrobial peptide with a cathelin-like pro-sequence. Biochem. Biophys. Res. Commun. 196, 1363–1368.

    Article  PubMed  CAS  Google Scholar 

  24. Zhao, C., Liu, L., and Lehrer, R. I. (1994) Identification of a new member of the protegrin family by cDNA cloning. FEBS Lett. 346, 285–288.

    Article  PubMed  CAS  Google Scholar 

  25. Zanetti, M., Del Sal, G., Storici, P., Schneider, C., and Romeo, D. (1993) The cDNA of the neutrophil antibiotic Bac5 predicts a pro-sequence homologous to a cysteme protemase inhibitor, that is common to other neutrophil antibiotics. J. Biol. Chem. 268, 522–526.

    PubMed  CAS  Google Scholar 

  26. Scocchi, M., Romeo, D., and Zanetti, M. (1994) Molecular cloning of Bac7, a proline-and arginine-rich antimicrobial peptide from bovine neutrophils. FEBS Lett. 352, 197–200.

    Article  PubMed  CAS  Google Scholar 

  27. Storici, P. and Zanetti, M. (1993) A cDNA derived from pig bone marrow cells contains a sequence identical to the intestinal antimicrobial peptide PR-39. Biochem. Biophys. Res. Commun. 196, 1058–1065.

    Article  PubMed  CAS  Google Scholar 

  28. Del Sal, G., Storici, P., Schneider, C., Romeo, D., and Zanetti, M. (1992) cDNA cloning of the neutrophil bactericidal peptide indolicidin. Biochem. Biophys. Res. Commun. 187, 467–472.

    Article  PubMed  Google Scholar 

  29. Storici, P., Tossi, A., and Romeo, D. (1996) Purification and structural characterization of bovine cathelicidins, precursors of antimicrobial peptides, Eur. J. Biochem. 238, 769–776.

    Article  PubMed  CAS  Google Scholar 

  30. Skerlavaj, B., Romeo, D., and Gennaro, R. (1990) Rapid membrane permeabilization and inhibition of vital functions of Gram-negative bacteria by bactenecins. Infect. Immun. 58, 3724–3730.

    PubMed  CAS  Google Scholar 

  31. Jones, D. E. and Bevins, C. L. (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267, 23,216–23,225.

    PubMed  CAS  Google Scholar 

  32. Frohman, M. A., Dush, M. K., and Martin, G. L. (1988) Rapid production of full-length cDNAs from rare transcrips. Amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998–9002.

    Article  PubMed  CAS  Google Scholar 

  33. Ohara, O., Darn, R. L., and Gilbert, W. (1989) One-sided polymerase chain reaction the amplification of cDNA. Proc. Natl. Acad. Sci. USA 86, 5673–5677.

    Article  PubMed  CAS  Google Scholar 

  34. Schaefer, B. C. (1995) Revolutions in rapid amplification of cDNA ends new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal. Biochem. 227, 255–273.

    Article  PubMed  CAS  Google Scholar 

  35. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  36. Sambrook, J., Fritsh, E. F., and Maniatis, T. (1989) Molecular Cloning, A Laboratory Manual (2nd ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  37. Crowe, J. S., Cooper, H. J., Smith, M. A., Sums, M. J., Parker, D., and Gewert, D. (1991) Improved cloning efficient of polymerase chain reaction (PCR) products after proteinase K digestion. Nucleic Acids Res. 19, 184.

    Article  PubMed  CAS  Google Scholar 

  38. Scocchi, M., Skerlavaj, B., Romeo, D., and Gennaro, D. (1992) Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antimicrobial bactenecins. Eur. J. Biochem. 209, 589–595.

    Article  PubMed  CAS  Google Scholar 

  39. Pennington, M. W. and Dunn, B. M., eds. (1994) Peptide Synthesis Protocols—Methods in Molecular Biology vol. 35, Humana, Totowa, NJ.

    Book  Google Scholar 

  40. Grant, G. A. (1992) Synthetic Peptides A User Guide, W. H. Freeman, New York.

    Google Scholar 

  41. Atherton, E. and Sheppard, R. D. (1989) Solid Phase Synthesis—A Practical Approach. IRL Oxford University Press, Oxford, UK.

    Google Scholar 

  42. Innis, M. A. and Gelfand, D. H. (1990) Optimization of PCRs, in PCR Protocols A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic, San Diego, CA, pp. 3–12.

    Google Scholar 

  43. White, B. A., ed. (1993) PCR Protocols—Methods in Molecular Biology, vol. 15, Humana, Totowa, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Tossi, A., Scocchi, M., Zanetti, M., Gennaro, R., Storici, P., Romeo, D. (1997). An Approach Combining Rapid cDNA Amplification and Chemical Synthesis for the Identification of Novel, Cathelicidin-Derived, Antimicrobial Peptides. In: Shafer, W.M. (eds) Antibacterial Peptide Protocols. Methods In Molecular Biology™, vol 78. Humana Press. https://doi.org/10.1385/0-89603-408-9:133

Download citation

  • DOI: https://doi.org/10.1385/0-89603-408-9:133

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-408-2

  • Online ISBN: 978-1-59259-564-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics