Skip to main content

Lyophilization of Vaccines

  • Protocol
Book cover Vaccine Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 4))

Abstract

However effective a therapeutic agent may appear during clinical trials, its full potential as a marketable product can only be assured if the material can be stored and distributed in a stabilized form. This is particularly the case with labile biologlcals, such as attenuated vaccines, especially when these products need to be transported in tropical regions with limited distribution infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vansteenberge, M. P. (1903) Precede de conservation a l’etat sec. Cr. Seanc. Soc. Biol. 55, 1646,1647.

    Google Scholar 

  2. Flosdorf, E. W. and Mudd, S. (1935) Procedure and apparatus for preservation in the lyophile form of serum and other biological substances. J. Immunol. 29, 389–425.

    CAS  Google Scholar 

  3. Jameson, P., Greiff, D., and Grossberg, S. E. (1979) Thermal stability of freezedried mammalian interferons. Cryobiology 16, 301–314.

    Article  PubMed  CAS  Google Scholar 

  4. Mackenzie, A. P. (1966) Basic principles of freeze-drying for pharmaceutrcals. Bull. Parenteral Drug Assoc. 20, 101–129.

    CAS  Google Scholar 

  5. Mackenzie, A. P. (1977) The physico-chemical basis for the freeze-drying process, in Developments in Biological Standards, Vol. 36. Karger, Basel, pp. 51–57.

    Google Scholar 

  6. Mazur, P (1970) Cryobrology: the freezing of biological systems. Science 168, 939–949.

    Article  PubMed  CAS  Google Scholar 

  7. Mazur, P., Leibo, S P., and Chu, H. Y (1972) A two factor hypothesis of freezing injury. Evidence from Chinese Hamster tissue cells. Exp Cell Res 71, 345–355.

    Article  PubMed  CAS  Google Scholar 

  8. Meryman, H. T., Williams, R. J., and St. J Douglas, M. (1977) Freezing injury from solution effects and its prevention by natural or artrficial cryoprotection. Cryobiology 14, 287–302.

    Article  PubMed  CAS  Google Scholar 

  9. Franks, F. (1985) Biophysics and Biochemistry at Low Temperatures Cambridge University Press, Cambridge, UK.

    Google Scholar 

  10. van den Berg, L. and Rose, D. (1959) Effect of freezing on the pH and composition of sodium and potassium phosphate solutions to the reciprocal system KH2-Na2HPO4 H2O. Arch. Biochim. Biophys. 81, 319–329.

    Article  Google Scholar 

  11. Taylor, M. J. (1981) The meaning of pH at low temperature. Cryobiology 2, 231–239.

    Google Scholar 

  12. Arakawa, T., Carpenter, J. F, Kita, Y. A., and Crowe, J. H. (1990) The basis for toxicity of certain cryoprotectants· a hypothesis Cryobiology 27, 401–415.

    Article  CAS  Google Scholar 

  13. Ashwood-Smith, M. J and Farrant, J. (1980) Low Temperature Preservation in Medicine and Biology. Pitman Medical, Tonbridge Wells, UK.

    Google Scholar 

  14. Grout, B., Morris, J., and McLellan, M. (1990) Cryopreservation and the maintenance of cell lines. Tibtech 8, 293–297.

    CAS  Google Scholar 

  15. Farrant, J. (1980) General observations on cell preservation, in Low Temperature Preservation in Medicine and Biology (Ashwood-Smith, M. J. and Farrant, J., eds.), Pitman Medical, Tonbridge Wells, UK, pp. 1–18.

    Google Scholar 

  16. Heckly, R. J. and Quay, J. (1983) Adventitious chemistry at reduced water activities: free radicals and polyhydroxy compounds. Cryobiology 20, 613–624.

    Article  PubMed  CAS  Google Scholar 

  17. Ashwood-Smith, M. J. (1980) Preservation of microorganisms by freezing, freezedrying and desiccation, in Low Temperature Preservation in Medicine and Biology (Ashwood-Smith, M. J. and Farrant, J., eds.), Pitman Medical, Tonbridge Wells, UK, pp. 219–252.

    Google Scholar 

  18. Adams, G. D. J. (1994) Freeze-drying of biohazardous products, in Biosafety in Industrial Biotechnologv (Hambleton, P., Melling, J., and Salusbury, T. T., eds.), Blackie Academic and Professional, London, pp. 178–212.

    Google Scholar 

  19. Klapes, N. A. and Vesley, D. (1990) Vapour-phase hydrogen peroxide as a surface decontaminant and sterilant. Appl Environ. Microbiol 56(2), 503–506.

    PubMed  CAS  Google Scholar 

  20. Rowe, T. W. G. (1971) Machinery and methods in freeze-drying. Cryobiology 8, 153–172.

    Article  PubMed  CAS  Google Scholar 

  21. Rowe, T. W. G. (1990) Glossary of terms used in freeze-drying. Obtainable from T. W. G. Rowe, 20 Nightingale Square, London, SW12 8QN, UK.

    Google Scholar 

  22. Adams, G. D. J. (1991) The loss of substrate from a vial during freeze-drying using Escherichia coli as a trace organism. J. Chem. Tech. Biotechnol 52, 511–518.

    Google Scholar 

  23. Thorne, A. L. C. (1953) Recovery of caprinized and lapinized rinderpest viruses from condensed water vapour removed during desiccation. Nature 171, 605.

    Article  Google Scholar 

  24. Parker, J. and Smith, H. M. (1972) Design and construction of a freeze-drier incorporating improved standards of biological safety. .J. Appl. Chem. Biotech. 22, 925–932.

    Article  CAS  Google Scholar 

  25. Adams, G. D. J. (1991) Freeze-drying of biological materials. Drying Technol. 9, 891–925.

    Article  Google Scholar 

  26. Mackenzie, A. P. (1985) A current understanding of the freeze-drying of representative aqueous solutions, in Refiigerution Science and Technology: Fundamentals and Applications of Freeze-Drying to Btological Matertals, Drugs and Foodstuffs. International Institute of Refrigeration, Paris, pp. 21–34.

    Google Scholar 

  27. Pikal, M. J. (1991) Freeze-drying of proteins II: formulation selection. Pharm. Technol. Intern. 3, 40–43.

    Google Scholar 

  28. Franks, F. (1989) Improved freeze-drying: an analysis of the basic scientific principles. Process Biochem. 24, iii–vii.

    Google Scholar 

  29. Franks, F (1990) Freeze-drying. from empiricism to predictability Cryoletters 11, 93–110.

    Google Scholar 

  30. Pikal, M. J. (1991) Freeze-drying of proteins I: process design. Pharm. Technol Intern. 3, 37–43.

    Google Scholar 

  31. Bellows, R. J. and King, J. (1972) Freeze-drying aqueous solutions: maximal allowable operating temperatures. Cryobiology 9, 559–561.

    Article  PubMed  CAS  Google Scholar 

  32. Franks, F., Hatley, R. H. M., and Mathias, S. F. (1991) Materials science and the production of shelf-stable biologicals. Pharm. Technol. Intern. 3, 24–34.

    Google Scholar 

  33. Greaves, R. I. N. (1954) Theoretical aspects of drying by vacuum sublimation, in Biological Applications of Freezing and Drying (Harris, R. J. ed.), Academic, New York, pp. 87–127.

    Google Scholar 

  34. Rey, L. R. (1960) Thermal analysis of eutectics in freezing solutions. Ann. NY Acad. Sci. 85, 510–534.

    Article  PubMed  CAS  Google Scholar 

  35. Mackenzie, A. P. (1985) Changes in electrical resistance during and their application to the control of the freeze-drying process, in Fundamentals and Applications of Freeze-Drying to Biological Materials, Drugs and Foodstuffs. International Institute of Refrigeration, Paris, pp. 155–163.

    Google Scholar 

  36. Mackenzie, A. P. (1964) Apparatus for microscopic observations during freezedrying. Biodynamica 9, 223–231.

    Google Scholar 

  37. Adams, G. D. J. (1995) The preservation of inocula, in Microbiological Quality Assurance: A Guide Towards Relevance and Reproducibility of Inocula (Brown, M. R. W. and Gilbert, P., eds.), CRC, Boca Raton, FL, pp. 89–112.

    Google Scholar 

  38. Levine, H. and Slade, L. (1988) Water as plastizer: physico-chemical aspects of low moisture polymeric systems. Water Sci. Rev. 5, 79–185.

    Google Scholar 

  39. Nicholson, A. E. (1977) Predicting stability of lyophilized products, in International Symposium on Freeze-Drying of Biological Products, vol. 36: Developments in Biological Standards. Karger, Basel, pp. 69–75.

    Google Scholar 

  40. Cowdery, S., Frey, M., Orlowski, S., and Gray, A. (1977) Stability characteristics of freeze-dried human live virus vaccines, in Internationa1 Symposium on Freeze-Drying of Biological Products, vol. 36 Developments in Biological Standards. Karger, Basel, pp. 297–303.

    Google Scholar 

  41. Franks, F. (1992) Freeze-drying: from empiricism to predictability. The significance of glass transitions, in Developments in Biological Standards. Karger, Basel, pp. 9–19.

    Google Scholar 

  42. Tsourouflis, S., Flink, J. M., and Karel, M. (1976) Loss of structure in freezedried carbohydrate solutions: the effect of temperature, moisture content and composition. J. Sci. Food Agricul. 27, 509–519.

    Article  CAS  Google Scholar 

  43. Appleyard, G. and Maber, H. B. (1974) Plaque formation by influenza viruses in the presence of trypsin. J. Gen. Virol. 25, 351–357.

    Article  PubMed  CAS  Google Scholar 

  44. Greiff, D. and Rightsel, W. A. (1968) Stability of suspensions of influenza virus dried to different contents of residual moisture by sublimation in vacuo. Appl. Microbiol. 16, 835–840

    PubMed  CAS  Google Scholar 

  45. Adams, G. D. J. and Irons, L. I. (1992) Practical aspects of formulation: the avoidance of product collapse. Pharm J. 249, 442–443.

    Google Scholar 

  46. Orndorff, G. R. and Mackenzie, A. P. (1973) The function of the suspending medium during the freeze-drying preservation of Escherichia coli. Cryobiology 10, 475–487.

    Article  PubMed  CAS  Google Scholar 

  47. Angus, R. D., Love, E L., and Pietz, D. E. (1977) Evaluations of five mediums for the stabihsation of Brucellu abortus strain 19 desiccated by lyophilization. Develop. Biol. Stand. 36, 307–312.

    Google Scholar 

  48. Cox, C. S. (1991) Roles of Maillard Reactions in Disease. HMSO Publications, London.

    Google Scholar 

  49. Greiff, D. (1971) Protein structure and freeze-drying: the effects of residual moisture and gases. Cryobiology 8, 145–152.

    Article  PubMed  CAS  Google Scholar 

  50. Cammack, K. A. and Adams, G. D. J. (1985) Formulation and storage, in Animal Cell Biotechnology, vol. 2 (Spiers, R. E. and Griffiths, J. eds.), Academic, London, pp. 251–288.

    Google Scholar 

  51. Center for Biologics Evaluation and Research (1990) Guidelines for the determination of residual moisture in dried biological products. Docket No. 89D-0140 Docket Management Branch (HFA 305), Food and Drug Administration, Room 4-62, 5600 Fischers Lane, Rockville, MD 20857 USA.

    Google Scholar 

  52. Phillips, G. O, Harrop, R., Wedlock, D. J., Srbova, H., Celba, V., and Drevo, M. (1981) A study of the water binding in lyophilised viral vaccine systems. Cryobiology l8, 414–419

    Article  Google Scholar 

  53. Beale, P. T. (1983) Water in biological systems. Cryobiology 20, 528–531.

    Google Scholar 

  54. Podolsky, M. V. and Roustantinov, J. A. (1980) A study of freeze-drying and determination of residual moisture of dry biological materials. Cryobiology 17, 585–588

    Article  PubMed  CAS  Google Scholar 

  55. Flink, J. M. and Knudsen, H. (1983) An introduction to freeze-drying. Heto Lab Equipment A/S, Birkerod, Denmark.

    Google Scholar 

  56. Adams, G. D. J. (1990) Residual moisture and the freeze-dried product, in Lyophiltzation Technology Handbook. The Center for Professional Advancement, Academic Center, PO Box H, East Brunswick, NJ, USA, pp. 581–604.

    Google Scholar 

  57. May, J. C., Grim, E., Wheeler, R. M., and West, J. (1982) Determination of residual moisture in freeze-dried viral vaccmes: Karl Fischer, gravimetric and thermogravimetric methodologies. J. Biol Stand. 10, 249–259.

    Article  PubMed  CAS  Google Scholar 

  58. May, J., Wheeler, R. M., and Grim, E. (1989) The gravimetric method for the determination of residual moisture in freeze-dried biological products. Cryobrology 26(3), 277–284.

    Article  CAS  Google Scholar 

  59. Pemberton, J. R. (1977) Critical factors of the vacuum oven techmque which influence the estimation of moisture in vetinary biologics, in International Symposium on Freeze-Drying of Biological Products, vol. 36: Developments in Biological Standards. Karger, Basel, pp. 191–199.

    Google Scholar 

  60. Baker, P. R. W. (1955) The microdetermmation of residual moisture in freezedried biological materials. J, Hyg. 53, 426–435.

    Article  CAS  Google Scholar 

  61. Hydranal Manual (1988) Eugen Scholz reagents. Reidel-de-Haan Aktiengeseuschaft, Wunstorfer Strasse, 40. D-3016 Seelze, Germany.

    Google Scholar 

  62. Robinson, L. (1972) A gas chromatography method of measuring residual moisture in freeze-dried smallpox vaccine. Bull. Wld. Hlth. Org. 47, 7–11

    CAS  Google Scholar 

  63. Jewell, J. E., Workman, R., and Zelenick, L. D. (1977) Moisture analysis of lyophihzed allergenic extracts, in International Sympostum on Freeze-Drying of Biological Products, vol 36: Develoments in Biological Standards. Karger, Basel, pp. 181–189.

    Google Scholar 

  64. Griffin, W., Cook, E. C., and Mehaffrey, M. A. (1981) Predicting the stability offreeze-dried Fusobacterium monttjerum. Proficiency testing samples by accelerated storage tests. Cryobiology 18, 420–425.

    Article  PubMed  CAS  Google Scholar 

  65. Greiff, D. and Rightsel, W. A. (1965) Stabilities of suspensions of vnus after vacuum sublimation and storage. Cryobiology 3, 435–443.

    Google Scholar 

  66. Greiff, D. and Rightsel, W. A. (1969) Stabilities of freeze-dried suspensions of influenza virus sealed in vacuum or under different gases. Appl. Mcrobiology 17, 830–835.

    CAS  Google Scholar 

  67. Rudge, R. H. (1984) Maintenance of bacteria by freeze-drying, in Maintenance of Microorganisms (Kirsop, B. E. and Snell, J. J. S. eds.), Academic, London, pp. 23–35.

    Google Scholar 

  68. Levine, S. (1986) Validation of packaging operations, in Valtdation of Aseptic Pharmaceutical Processes (Carleton, F. J. and Agalloco, J. P., eds.), Marcel Dekker, New York, pp. 543–593.

    Google Scholar 

  69. de Rizzo, E., Pereira, A., Fang, F. L., Takata, S., Tenorio, E. C., Pral, M. M., Mendes, I. F., and Gallina, N. M. (1990) Photosensitivity and stability of freezedried and/or reconstituted measles vaccines. Rev. Saude Publ. 24, 51–59.

    Google Scholar 

  70. Heckly, R. J. (1978) Preservation of microorganisms. Adv Appl. Microbial. 24, 1–53.

    Article  CAS  Google Scholar 

  71. Rightsel, W. A. and Greiff, D. (1967) Freezing and freeze-drying of viruses. Cryobiology 3, 423–431.

    Article  PubMed  CAS  Google Scholar 

  72. Ashwood-Smith, M. J. and Grant, E. (1976) Mutation induction in bacteria by freezedrying. Cryobiology 13, 206–213.

    Article  PubMed  CAS  Google Scholar 

  73. Banno, L., Sakane, T., and Iijima, T. (1978) Mutation problems in preservation of bacteria (Escherichia coli) by L-drying. Cryobiology 15, 692,693

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Adams, G.D.J. (1996). Lyophilization of Vaccines. In: Robinson, A., Farrar, G.H., Wiblin, C.N. (eds) Vaccine Protocols. Methods in Molecular Medicine™, vol 4. Humana Press. https://doi.org/10.1385/0-89603-334-1:167

Download citation

  • DOI: https://doi.org/10.1385/0-89603-334-1:167

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-334-4

  • Online ISBN: 978-1-59259-588-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics