Skip to main content

Stabilizing Antibody Secretion of Human Epstein Barr Virus-Activated B-Lymphocytes with Hybridoma Formation by Electrofusion

  • Protocol
Animal Cell Electroporation and Electrofusion Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 48))

Abstract

Epstein Barr virus (EBV) can be used to transform human B-lymphocytes to derive populations of cells secreting specific antibodies of interest. Isolating monoclonal or stable populations of these cells, however, has proven very difficult (1). In our laboratory, we have developed methods to immortalize specific antibody-producing cells by fusing secreting EBV-activated lymphocytes to mouse-human heteromyeloma cell lines with electrofusion, followed by cloning (2). This methodology has allowed us to produce human hybridomas secreting 1–200 µg/mL of IgG specific for HCMV (3), HTLV-I (4), and HCV (unpublished) using several different mouse-human heteromyeloma fusion partners. Because as few as 5 × 104–106 EBV-activated B-cells can be successfully fused with a high degree of efficiency and consistency (up to one hybrid for each 100–1000 input EBV-activated cells), they can be fused as soon as antibody can be detected in a microtiter well, before the cells lose secretion or are overgrown by nonsecreters (5). High efficiency is achieved by varying the electrical parameters depending on the specific cells, the cell number, and the medium in which the cells are fused (see Table 1).

Table 1 Examples of Fusion Voltage Used with Different Fusion Partners in Different Fusion Media to Immortalize Antigen-Specific Antibody Secreted by EBV-Activated Lymphocytes from Peripheral Blood

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James, K., and Bell, G. T. (1987) Human monoclonal antibody production, current status and future prospects. J. Immunol. Meth. 100, 5–40.

    Article  CAS  Google Scholar 

  2. Foung, S. K. H., and Perkins, S. (1989) Electric field-induced cell fusion and human monoclonal antibodies. J. Immunol. Meth. 116, 117–122.

    Article  CAS  Google Scholar 

  3. Foung, S. K. H., Perkins, S., Bradshaw, P., Rowe, J., Rabin, L., Reyes, G. R., and Lennette, E. T. (1989) Human monoclonal antibodies to human cytomegalovirus. J. Infect. Dis. 159, 436–443.

    PubMed  CAS  Google Scholar 

  4. Perkins, S., Rehman, M., Rowe, J., and Foung, S. K. H. (1992) Generation of human monoclonal antibodies to HTLV-I by microfusion techniques. Second International Conference on Human Antibodies and Hybridomas. Cambridge, England.

    Google Scholar 

  5. Foung, S., Perkins, S., Kadafer, K., Gessner, P., and Zimmermann, U. (1990) Development of microfusion techniques to generate human hybridomas. J. Immunol. Meth. 134, 35–42.

    Article  CAS  Google Scholar 

  6. Zimmermann, U. (1986) Electrical breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105, 175–256.

    Article  Google Scholar 

  7. Perkins, S., Zimmermann, U., and Foung, S. K. H. (1991) Parameters to enhance human hybridoma formation with hypo-osmolar electrofusion. Hum. Antibod. Hybridomas 2, 155–159.

    CAS  Google Scholar 

  8. Carroll, W. L., Thielemans, K., Dilley, J., and Levy, R. (1986) Mouse × human heterohybridomas as fusion partners with human B cell tumors. J. Immunol. Meth. 89, 61–72.

    Article  CAS  Google Scholar 

  9. Boyum, A. (1968) Isolation of monoclonal cells and granulocytes from human blood. Scand. J. Clin. Lab. Invest. 97, 77–87.

    CAS  Google Scholar 

  10. Foung, S. K. H., Perkins, S., and Engleman, E. G. (1985) Peripheral blood lymphocyte separation from whole blood or buffy coats, in Human Hybridomas and Monoclonal Antibodies (Engleman, E. G., Foung, S. K. H., Larrick, J., and Raubitschek, A., eds.), Plenum, New York, pp. 435–436.

    Google Scholar 

  11. Saxon, A., Feldhaus, J., and Robbins, R. A. (1976) Single step separation of human T and B cells using AET treated rosettes. J. Immunol. Meth. 12, 285–288.

    Article  CAS  Google Scholar 

  12. Foung, S. K. H., Coutre, S., and Engleman, E. G. (1985) Separation of human T and non-T lymphocytes from peripheral blood, in Human Hybridomas and Monoclonal Antibodies (Engleman, E. G., Foung, S. K. H., Larrick, J., and Raubitschek, A., eds.), Plenum, New York, pp. 437–440.

    Google Scholar 

  13. Rehman, S. M. M., Perkins, S., Zimmermann, U., and Foung, S. K. H. (1992) Human hybridoma formation by hypo-osmolar electrofusion, in Guide to Electroporation and Electrofusion (Chan, D. L., Chassy, B. M., Saunders, J. A., and Sowers, A. E., eds.), Academic, San Diego, CA, pp. 523–533.

    Google Scholar 

  14. Perkins, S., Zimmermann, U., Gessner, P., and Foung, S. K. H. (1989) Formation of hybridomas secreting human monoclonal antibodies with mouse-human fusion partners, in Electromanipulation in Hybridoma Technology, a Laboratory Manual (Borrebaeck, C. and Hagen, I., eds.), Stockton, New York, pp. 47–70.

    Google Scholar 

  15. Foung, S. K. H. and Perkins, S. (1985) Cloning by limiting dilution, in Human Hybridomas and Monoclonal Antibodies (Engleman, E. G., Foung, S. K. H., Larrick, J., and Raubitschek, A., eds.), Plenum, New York, p. 476.

    Google Scholar 

  16. Larrick, J., Raubitschek, A., and Senyk, G. (1985) Soft agar cloning protocol, in Human Hybridomas and Monoclonal Antibodies (Engleman, E. G., Foung, S. K. H., Larrick, J., and Raubitschek, A., eds.), Plenum, New York, pp. 474–475.

    Google Scholar 

  17. Schmitt, J. J., and Zimmermann, U. (1989) Enhanced hybridoma production by electrofusion in strongly hypo-osmolar solutions. Biochemica Et Biophysica Acta 983, 42–50.

    Article  CAS  Google Scholar 

  18. Bradshaw, P. A., Perkins, S., Lenette, E. T., Rowe, J., and Foung, S. K. H. (1988) Generation and applications of human monoclonal antibodies to herpes viruses, in Proceedings of the International Symposium on Clinical Applications of Human Monoclonal Antibodies (Hubbard, R. and Marks, V., eds.), Plenum, New York, pp. 149–158.

    Google Scholar 

  19. Bradshaw, P. A., Duran, M., Lee, E., Young, L., Reyes, G. R., Perkins, S., Pande, H., and Foung, S. K. H. (1991) Anti-CMV human monoclonal antibodies epitope identification and immune response analysis, in Progress in Cytomegalovirus Research (Landini, M. P., ed.) Elsevier, Amsterdam, The Netherlands, pp. 157–160.

    Google Scholar 

  20. Hadlock, K., Perkins, S., Rehman, S. M. M., Chan, L., Lipka, J., Reyes, G. R., and Foung, S. K. H. (1992) Production, characterization and epitope mapping of a human monoclonal antibody to HTLV-I p19 gag protein. Fifth International Conference on Human Retrovirology: HTLV. Kumamoto, Japan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Perkins, S., Foung, S.K.H. (1995). Stabilizing Antibody Secretion of Human Epstein Barr Virus-Activated B-Lymphocytes with Hybridoma Formation by Electrofusion. In: Nickoloff, J.A. (eds) Animal Cell Electroporation and Electrofusion Protocols. Methods in Molecular Biology, vol 48. Humana Press. https://doi.org/10.1385/0-89603-304-X:295

Download citation

  • DOI: https://doi.org/10.1385/0-89603-304-X:295

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-304-7

  • Online ISBN: 978-1-59259-535-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics