Skip to main content

Proteinase K (EC 3.4.21.14)

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 16))

Abstract

Proteinase K is a serine protease and the main proteolytic enzyme produced by the fungus Tritirachium album Limber (1). The enzyme has abroad specificity, cleaving peptide bonds C-terminal to a number of amino acids. The enzyme is produced, together with other proteases and an aminopeptidase, during stationary phase when the fungus is grown by submerged culture. The enzyme is so named because the organism can grow on native keratin as sole carbohydrate and nitrogen source owing to the enzyme’s ability to digest keratin. Because of its broad substrate specificity, high activity, and its ability to digest native proteins, proteinase K has found considerable use in procedures where the inactivation and degradation of proteins is required, particularly during the purification of nucleic acids. The enzyme retains activity in the presence of 0.5% sodium dodecyl sulfate, which is used in mammalian cell lysis. This allows the use of proteinase K in conjunction with cell lysis resulting in the rapid degradation of released intracellular nucleases and the subsequent isolation of intact nucleic acids. Following digestion, degraded protein is routinely removed by phenol extraction. For example, proteinase K has been used to degrade protein during the isolation of high-mol-wt eukaryotic DNA for cloning in phage or cosmid vectors (24), to remove protein during plasmid (5) and lambda phage DNA (6) isolation, and to remove protein from protein DNA complexes produced during DNA footprinting analysis (7).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ebeling, W., Hennrich, N., Klockow, M., Metz, H., Orth, H. D., and Lang, H. (1974) Proteinase K from Tritirachium album Limber. Eur. J. Biochem. 47, 91–97.

    Article  PubMed  CAS  Google Scholar 

  2. Mathew, C. G. P. (1984) Isolation of high molecular weight eukaryotic DNA, in Methods in Molecular Biology, vol. 2: Nucleic Acids (Walker, J. M., ed.), Humana, Clifton, NJ, pp. 31–34.

    Google Scholar 

  3. Steven, J., McKechnie, D., and Graham, A. (1988) Isolation of high molecular weight DNA suitable for the construction of genomic libraries, in Methods in Molecular Biology, vol. 4: New Nucleic Acid Techniques (Walker, J. M., ed.), Humana, Clifton, NJ, pp. 221–234.

    Google Scholar 

  4. Haley, J. D. (1988) Cosmid library construction, in Methods in Molecular Biology, vol. 4: New Nucleic Acid Techniques (Walker, J. M. ed.), Humana, Clifton, NJ, pp. 257–283.

    Google Scholar 

  5. Van Helden, P. D. and Hoal, E. G. (1988) Plasmid preparation on Sephacryl S1000, in Methods in Molecular Biology, vol. 4: New Nucleic Acid Techniques (Walker, J. M., ed.), Humana, Clifton, NJ, pp. 69–74.

    Google Scholar 

  6. Bateson, A. N. and Pollard, J. W. (1988) Construction of mammalian genomic libraries using λ replacement vectors, in Methods in Molecular Biology, vol. 4: New Nucleic Acid Techniques (Walker, J. M. ed.), Humana, Clifton, NJ, pp. 235–355.

    Google Scholar 

  7. Plumb, M. A. and Goodwin, G. H. (1988) Detection of sequence-specific protein-DNA interaction by the DNA-footprinting techniques, in Methods in Molecular Biology, vol. 4: New Nucleic Acid Techniques (Walker, J. M., ed.), Humana, Clifton, NJ, pp. 139–164.

    Google Scholar 

  8. McGookin, R. (1984) RNA extraction by the proteinase K method, in Methods in Molecular Biology, vol. 2: Nucleic Acids (Walker, J. M. ed.), Humana, Clifton, NJ, pp. 109–112.

    Google Scholar 

  9. Wiegers, U. and Hilz, H. (1971) A new method using ‘Proteinase K’ to prevent mRNA degradation during isolation from HeLa cells. Biochem. Biophys. Res. Comm. 44, 513–519.

    Article  PubMed  CAS  Google Scholar 

  10. Fourcroy, P. (1980) Isolation of undegraded polysomes from radish cotyledons: Use of Proteinase K and cycloheximide. Phytochemistry 19, 7–10.

    Article  CAS  Google Scholar 

  11. Lebherz, H. G., Burke, T., Shackelford, J. E., Strickler, J. E., and Wilson, K. J. (1986) Specific proteolytic modification of creatine kinase isoenzymes. Biochem. J. 233, 51–56.

    PubMed  CAS  Google Scholar 

  12. Randall, L. L. (1983) Translocation of domains of nascent perip1asmic proteins across the cytoplasmic membrane is independent of elongation. Cell 33, 231–240.

    Article  PubMed  CAS  Google Scholar 

  13. Lipp, J. and Dobberstein, B. (1986) Signal recognition particle-dependent membrane insertion of mouse invariant chain: A membrane spanning protein with a cytoplasmically exposed amino terminus. J. Cell Biol. 102, 2169–2175.

    Article  PubMed  CAS  Google Scholar 

  14. Zimmermann, R. and Mollay, C. (1986) Import of honeybee prepromelittin into the endoplasmic reticulum. J. Biol. Chem. 261, 12,889–12,895.

    PubMed  CAS  Google Scholar 

  15. Imanaka, T., Small, G. M., and Lazarow, P. B. (1987) Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not membrane potential. J. Cell Biol. 105, 2915–2922.

    Article  PubMed  CAS  Google Scholar 

  16. Schleyer, M. and Neupert, W. (1985) Transport of proteins into mitochondria: Translocational intermediates spanning contact sites between outer and inner membranes. Cell 43, 339–350.

    Article  PubMed  CAS  Google Scholar 

  17. Müller, M. and Blobel, G. (1984) In vitro translocation of bacterial proteins across the plasmamembrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 81, 7421–7425.

    Article  PubMed  Google Scholar 

  18. Wolfe, P. B. and Wickner, W. (1984) Bacterial leader peptidase, a membrane protein without a leader peptide, uses the same export pathway a presecretory proteins. Cell 36, 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  19. Connolly, T., Collins, P., and Gilmore, R. (1989) Access of Proteinase K to partially translocated nascent polypeptides in intact and detergent solubilized membranes. J. Cell Biol. 108, 299–307.

    Article  PubMed  CAS  Google Scholar 

  20. Krutzsch, H. C. (1986) Polypeptide sequence analysis using gas chromatography-mass spectrometry, in Methods of Protein Microcharacterization: A Practical Handbook (Shively, J. E., ed.), Humana, Clifton, NJ, pp. 381–401.

    Chapter  Google Scholar 

  21. Gunkel, F. A. and Gassen, H. G. (1989) Proteinase K from Tritirachium album Limber. Characterisation of the chromosomal gene and expression of the cDNA in Escherichia coli. Eur. J. Biochem. 179, 185–194.

    Article  PubMed  CAS  Google Scholar 

  22. Betzel, C., Pal, G. P., and Saenger, W. (1988) Three-dimensional structure of Proteinase K at 0.15nm resolution. Eur. J. Biochem. 178, 155–171.

    Article  PubMed  CAS  Google Scholar 

  23. Betzel, C., Bellemann, M., Pal, G. P., Bajorath, J., Saenger, W., and Wilson, K. S. (1988) X-ray and model building studies on the specificity of the active site of Proteinase K. Proteins 4, 157–164.

    Article  PubMed  CAS  Google Scholar 

  24. Pähler, A., Banerjee, A., Dattagupta, J. K., Fujiwana, T., Lindner, K., Pal, G. P., Suck, D., Weber, G., and Saenger, W. (1984) Three-dimensional structure of fungal Proteinase K reveals similarity to bacterial subtilisin. EMBO J. 3, 1311–1313.

    PubMed  Google Scholar 

  25. Jany, K. D., Lederer, G., and Mayer, B. (1986) Amino acid sequence of Proteinase K from mold Tritirachium album Limber. Proteinase K—a subtilisin related enzyme with disulfide bonds. FEBS Lett. 199, 139–144.

    Article  CAS  Google Scholar 

  26. Bajorath, J., Saenger, W., and Pal, G. P. (1988) Autolysis and inhibition of Proteinase K, a subtilisin-related serine proteinase isolated from the fungus Tritirachium album Limber. Biochem. Biophys. Acta. 954, 176–182.

    Article  PubMed  CAS  Google Scholar 

  27. Bajorath, J., Hinrichs, W., and Saenger, W. (1988) The enzymatic activity of proteinase K is controlled by calcium. Eur. J. Biochem. 176, 441–447.

    Article  PubMed  CAS  Google Scholar 

  28. Keesey, J. (ed.) (1989) Biochemical Information —A Revised Biochemical References Source. Pub. Boehringer Mannheim Biochemicals, Indianapolis, IN.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc.

About this protocol

Cite this protocol

Sweeney, P.J., Walker, J.M. (1993). Proteinase K (EC 3.4.21.14). In: Burrell, M.M. (eds) Enzymes of Molecular Biology. Methods in Molecular Biology™, vol 16. Humana Press. https://doi.org/10.1385/0-89603-234-5:305

Download citation

  • DOI: https://doi.org/10.1385/0-89603-234-5:305

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-322-1

  • Online ISBN: 978-1-59259-503-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics