Skip to main content
Log in

Studying cytoskeletal dynamics in living cells using green fluorescent protein

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Microfilaments, intermediate filaments, and microtubules are three major cytoskeletal systems providing cells with stability to maintain proper shape. Although the word “cytoskeleton” implicates rigidity, it is quite dynamic exhibiting constant changes within cells. In addition to providing cell stability, it participates in a variety of essential and dynamic cellular processes including cell migration, cell division, intracellular transport, vesicular trafficking, and organelle morphogenesis. During the past eight years since the green fluorescent protein (GFP) was first used as a marker for the exogenous gene expression, it has been an especially booming era for live cell observations of intracellular movement of many proteins. Because of the dynamic behavior of the cytoskeleton in the cell, GFP has naturally been a vital part of the studies of the cytoskeleton and its associated proteins. In this article, we will describe the advantage of using GFP and how it has been used to study cytoskeletal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsien, R.Y. (1998) The Green Fluorescent Protein. Annu. Rev. Biochem. 67, 509–544.

    Article  PubMed  CAS  Google Scholar 

  2. Haseloff, J. (1999) GFP variants for multispectral imaging of living cells. Method. Cell Biol. 58, 139–151.

    CAS  Google Scholar 

  3. Pepperkok, R., Squire, A., Geley, S., and Bastiaens, P.I. (1999) Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence life-time imaging microscopy. Curr. Biol. 9, 269–272.

    Article  PubMed  CAS  Google Scholar 

  4. Mitra, R.D., Silva, C.M., and Youvan, D.C. (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173, 13–17.

    Article  PubMed  CAS  Google Scholar 

  5. Day, R.N. (1998) Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrine 12, 1410–1419.

    Article  CAS  Google Scholar 

  6. Mahajan, N.P., Linder, K., Berry, G., Gordon, G.W., Heim, R., and Herman, B. (1998) Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat. Biotech. 16, 547–552.

    Article  CAS  Google Scholar 

  7. DeAngelis, D.A., Miesenbock, G., Zemelman, B.V., and Rothman, J.E. (1998) PRIM: proximity imaging of green fluorescent protein-tagged polypeptides. Proc. Nat. Acad. Sci. USA 95, 12312–12316.

    Article  CAS  Google Scholar 

  8. Westphal, M., Jungbluth, A., Heidecker, M., et al. (1997) Microfilament dynamics during cell movement and chemotaxis monitored using a GFP-actin fusion protein. Curr. Biol. 7, 176–183.

    Article  PubMed  CAS  Google Scholar 

  9. Choidas, A., Jungbluth, A., Sechi, A., Murphy, J., Ullrich, A., and Marriott, G. (1998) The suitability and application of a GFP-actin fusion protein for long-term imaging of the organization and dynamics of the cytoskeleton in mammalian cells. Eur. J. Cell Biol. 77, 81–90.

    PubMed  CAS  Google Scholar 

  10. Doyle, T., and Botstein, D. (1996) Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl. Acad. Sci. USA 93, 3886–3891.

    Article  PubMed  CAS  Google Scholar 

  11. Verkhusha, V., Tsukita, S., and Oda, H. (1999) Actin dynamics in lamellipodia of migrating border cells in the Drosophila ovary revealed by a GFP-actin fusion. FEBS Lett. 445, 395–401.

    Article  PubMed  CAS  Google Scholar 

  12. Fischer, M., Kaech, S., Knutti, D., and Matus, A. (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854.

    Article  PubMed  CAS  Google Scholar 

  13. Ballestrem, C., Wehrle-Haller, B., and Imhof, B. (1998) Actin dynamics in living mammalian cells. J. Cell Sci 111, 1649–1658.

    PubMed  CAS  Google Scholar 

  14. Heidemann, S., Kaech, S., Buxbaum, R., and Matus, A. (1999) Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol 145, 109–122.

    Article  PubMed  CAS  Google Scholar 

  15. Dabiri, G.A., Sanger, J.M., Portnoy, D.A., and Southwick, F.S. (1990) Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl. Acad. Sci. USA 87, 6068–6072.

    Article  PubMed  CAS  Google Scholar 

  16. Tilney, L.G., and Portnoy, D.A. (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109, 1597–1608.

    Article  PubMed  CAS  Google Scholar 

  17. Robbins, J.R., Barth, A.I., Marquis, H., de Hostos, E.L., Nelson, W.J., and Theriot, J.A. (1999) Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell Biol. 146, 1333–1350.

    Article  PubMed  CAS  Google Scholar 

  18. Heinzen, R.A., Grieshaber, S.S., Van Kirk, L.S., and Devin, C.J. (1999) Dynamics of actin-based movement by Rickettsia rickettsii in vero cells. Infect. Immunol. 67, 4201–4207.

    CAS  Google Scholar 

  19. Yoon, M., Moir, R., Prahlad, V., and Goldman, R. (1998) Motile properties of vimentin intermediate filament networks in living cells. J. Cell Biol. 143, 147–157.

    Article  PubMed  CAS  Google Scholar 

  20. Prahlad, V., Yoon, M., Moir, R., Vale, R., and Goldman, R. (1998) Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J. Cell Biol. 143, 159–170.

    Article  PubMed  CAS  Google Scholar 

  21. Yoon, K.H., Yoon, M., Moir, R.D., Khuon, S., Flitney, F.W., and Goldman, R.D. (2001) Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells. J. Cell Biol. 153, 503–516.

    Article  PubMed  CAS  Google Scholar 

  22. Scott, E.S., and O’Hare, P. (2001) Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection. J. Virol. 75, 8818–8830.

    Article  PubMed  CAS  Google Scholar 

  23. Carminati, J., and Stearns, T. (1997) Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629–641.

    Article  PubMed  CAS  Google Scholar 

  24. Straight, A., Marshall, W., Sedat, J., and Murray, A. (1997) Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574–578.

    Article  PubMed  CAS  Google Scholar 

  25. Cleveland, D. (1988) Autoregulated instability of tubulin mRNAs: a novel eukaryotic regulatory mechanism. Trends Biochem. Sci. 13, 339–343.

    Article  PubMed  CAS  Google Scholar 

  26. Ludin, B., and Matus, A. (1998) GFP illuminates the cytoskeleton. Trends Cell Biol. 8, 72–77.

    Article  PubMed  CAS  Google Scholar 

  27. Rusan, N.M., Fagerstrom, C.J., Yvon, A.M., and Wadsworth, P. (2001) Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol. Biol. Cell 12, 971–980.

    PubMed  CAS  Google Scholar 

  28. Mermall, V., Post, P., and Mooseker, M. (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279, 527–533.

    Article  PubMed  CAS  Google Scholar 

  29. Moores, S., Sabry, J., and Spudich, J. (1996) Myosin dynamics in live Dictyostelium cells. Proc. Natl. Acad. Sci. USA 93 443–446.

    Article  PubMed  CAS  Google Scholar 

  30. Yumura, S. (2001) Myosin II dynamics and cortical flow during contractile ring formation in Dictyostelium cells. J Cell Biol 154, 137–146.

    Article  PubMed  CAS  Google Scholar 

  31. Gerald, N.J., Damer, C.K., O’Halloran, T.J., and De Lozanne, A. (2001) Cytokinesis failure in clathrinminus cells is caused by cleavage furrow instability. Cell Motil. Cytoskeleton 48, 213–223.

    Article  PubMed  CAS  Google Scholar 

  32. Tuxworth, R.I., Weber, I., Wessels, D., et al. (2001) A role for myosin VII in dynamic cell adhesion. Curr Biol 11, 318–329.

    Article  PubMed  CAS  Google Scholar 

  33. Moss, J., Price, A., Raz, E., Driever, W., and Rosenthal, N. (1996) Green fluorescent protein marks skeletal muscle in murine cell lines and zebrafish. Gene 173, 89–98.

    Article  PubMed  CAS  Google Scholar 

  34. Hirokawa, N. (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526.

    Article  PubMed  CAS  Google Scholar 

  35. Hirokawa, N., Noda, Y., and Okda, Y. (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10, 60–73.

    Article  PubMed  CAS  Google Scholar 

  36. Huyett, A., Kahana, J., Silver, P., Zeng, X., and Saunders, W. (1998) The Kar3p and Kip2p motors function antagonistically at the spindle poles to influence cytoplasmic microtubule numbers. J. Cell Sci. 111, 295–301.

    PubMed  CAS  Google Scholar 

  37. Miller, R., Heller, K., Frisen, L., Wallack, D., Loayza, D., Gammie, A., and Rose, M. (1998) The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol. Biol. Cell 9, 2051–2068.

    PubMed  CAS  Google Scholar 

  38. Endow, S., and Komma, D. (1996) Centrosome and spindle function of the Drosophila Ncd microtubule motor visualized in live embryos using Ncd-GFP fusion proteins. J. Cell Sci. 109, 2429–2442.

    PubMed  CAS  Google Scholar 

  39. Zhou, H.M., Brust-Mascher, I., and Scholey, J.M. (2001) Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. J. Neurosci. 21, 3749–3755.

    PubMed  CAS  Google Scholar 

  40. Gibbons, I. (1981) Cilia and flagella of eukaryotes. J. Cell Biol. 91, 107s-124s.

    Article  PubMed  CAS  Google Scholar 

  41. Vallee, R., Wall, J., Paschal, B., and Shpetner, H. (1988) Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein. Nature 332, 561–563.

    Article  PubMed  CAS  Google Scholar 

  42. Holzbaur, E., and Vallee, R. (1994) DYNEINS: molecular structure and cellular function. Ann. Rev. Cell Biol. 10, 339–372.

    PubMed  CAS  Google Scholar 

  43. Criswell, P., Ostrowski, L., and Asai, D. (1996) A novel cytoplasmic dynein heavy chain: expression of DHC1b in mammalian ciliated epithelial cells. J. Cell Sci. 109, 1891–1898.

    PubMed  CAS  Google Scholar 

  44. Vaisberg, E., Grisson, P., and McIntosh, J. (1996) Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol. 1996, 831–842.

    Article  Google Scholar 

  45. Shaw, S., Yeh, E., Salmon, E., and Bloom, K. (1996) Digital time-lapsed DIC/Fluorescence imaging of dynein-GFP reveals dynamics of astral microtubules in Saccharomyces cerevisiae throughout the cell cycle. Mol. Biol. Cell 7s, 398a.

    Google Scholar 

  46. Shaw, S., Yeh, E., Maddox, P., Salmon, E., and Bloom, K. (1997) Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J. Cell Biol. 139, 985–994.

    Article  PubMed  CAS  Google Scholar 

  47. Xiang, X., Han, G., Winkelmann, D.A., Zuo, W., and Morris, N.R. (2000) Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1. Curr. Biol. 10, 603–606.

    Article  PubMed  CAS  Google Scholar 

  48. McNiven, M. 1998. Dynamin: a molecular motor with pinchase action. Cell 94, 151–154.

    Article  PubMed  CAS  Google Scholar 

  49. Obar, R.A., Collins, C.A., Hammarback, J.A., Shpetner, H.S., and Vallee, R.B. (1990) Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347, 256–261.

    Article  PubMed  CAS  Google Scholar 

  50. Shpetner, H., and Vallee, R. (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59, 421–432.

    Article  PubMed  CAS  Google Scholar 

  51. Cook, T.A., Urrutia, R., and McNiven, M.A. (1994) Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc. Natl. Acad. Sci. USA 91, 644–648.

    Article  PubMed  CAS  Google Scholar 

  52. Sontag, J.-M., Fykse, E.M., Ushkaryov, Y., Liu, J.-P., Robinson, P.J., and Südhof, T.C. (1994) Differential expression and regulation of multiple dynamins. J. Biol. Chem. 269, 4547–4554.

    PubMed  CAS  Google Scholar 

  53. Nakata, T., Takemura, R., and Hirokawa, N. (1993) A novel member of the dynamin family of GTP-binding proteins is expressed specifically in the testis. J. Cell Sci. 105, 1–5.

    PubMed  CAS  Google Scholar 

  54. Cook, T.A., Mesa, K., and Urrutia, R. (1996) Three dynamin-encoding genes are differentially expressed in developing rat brain. J. Neurochem. 67 927–931.

    PubMed  CAS  Google Scholar 

  55. Cao, H., Garcia, F. and McNiven, M. (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–2609.

    PubMed  CAS  Google Scholar 

  56. Presley, J., Cole, N., Schroer, T., Hirschberg, K., Zaal, K., and Lippincott-Schwartz, J. (1997) ER-to-Golgi transport visualized in living cells. Nature 389, 81–85.

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T., and Sutoh, K. (1998) Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383.

    Article  PubMed  CAS  Google Scholar 

  58. Iwane, A., Funatsu, T., Harada, Y., et al. (1997) Single molecular assay of individual ATP turnover by a myosin-GFP fusion protein expressed in vitro. FEBS Lett. 407, 235–238.

    Article  PubMed  CAS  Google Scholar 

  59. Romberg, L., Pierce, D., and Vale, R. (1998) Role of the kinesin neck region in processive microtubule-based motility. J. Cell Biol. 140, 1407–1416.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, Y., Pitts, K. & McNiven, M. Studying cytoskeletal dynamics in living cells using green fluorescent protein. Mol Biotechnol 21, 241–250 (2002). https://doi.org/10.1385/MB:21:3:241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:21:3:241

Index Entries

Navigation