Skip to main content
Log in

Ligand-independent signaling during early avian B cell development

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Surface immunoglobulin (sIg) expression has been conserved as a critical checkpoint in B lymphocyte development. In the chicken embryo, only sIg+ B cells are selectively expanded in the bursa of Fabricius, a primary lymphoid organ unique to the avian species. We have previously demonstrated that an interaction between the antigen-binding sites of sIg and a specific bursal ligand(s) is not required to regulate this developmental checkpoint. Rather, the requirement for sIg expression can be attributed to the surface expression of the Igα/β heterodimer associated with sIg. More specifically, ligand-independent signaling downstream of the Igα cytoplasmic domain drives all bursal stages of B cell development during embryogenesis. We discuss here a site-directed mutagenesis approach to identify the critical membrane proximal events involved in ligand-independent signaling during B cell development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ratcliffe MJH, Lassila O, Pink JR, Vainio O: Avian B cell precursors: surface immunoglobulin expression is an early, possibly bursa-independent event. Eur J Immunol 1986;16:129–133.

    Article  PubMed  CAS  Google Scholar 

  2. Mansikka A, Sandberg M, Lassila O, Toivanen P: Rearrangement of immunoglobulin light chain genes in the chicken occurs prior to colonization of the embryonic bursa of Fabricius. Proc Natl Acad Sci USA 1990; 87:9416–9420.

    Article  PubMed  CAS  Google Scholar 

  3. McCormack WT, Tjoelker LW, Barth CF, et al: Selection for B cells with productive IgL gene rearrangements occurs in the bursa of Fabricius during chicken embryonic development. Genes Dev 1989;3:838–847.

    Article  PubMed  CAS  Google Scholar 

  4. Reth M: Antigen receptors on B lymphocytes. Annu Rev Immunol 1992;10:97–121.

    Article  PubMed  CAS  Google Scholar 

  5. Reth M: Antigen receptor tail clue. Nature 1989;338:383–384.

    Article  PubMed  CAS  Google Scholar 

  6. Cambier JC: New nomenclature for the Reth motif (or ARH1/TAM/ARAM/YXXL). Immunol Today 1995;16:110.

    Article  PubMed  CAS  Google Scholar 

  7. Clark MR, Johnson SA, Cambier JC: Analysis of Igα tyrosine kinase interaction reveals two levels of binding specificity and tyrosine phosphorylated Igα stimulation of Fyn activity. EMBO J 1994;13:1911–1919.

    PubMed  CAS  Google Scholar 

  8. Muller R, Wienands J, Reth M: The serine and threonine residues in the Igα cytoplasmic tail negatively regulate immunoreceptor tyrosine-based activation motif-mediated signal transduction. Proc Natl Acad Sci USA. 2000;97:8451–8454.

    Article  PubMed  CAS  Google Scholar 

  9. Engels N, Wollscheid B, Wienands J: Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Igα. Eur J Immunol 2001; 31:2126–2134.

    Article  PubMed  CAS  Google Scholar 

  10. Kabak S, Skaggs BJ, Gold MR, et al: The direct recuritment of BLNK to immunoglobulin α couples the B-cell antigen receptor to distal signaling pathways. Mol Cell Biol 2002;22:2524–2535.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson SA, Pleiman CM, Pao L, Schneringer J, Hippen K, Cambier JC: Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique abilities to bind and activate Lyn and Syk tyrosine kinases. J Immunol 1995;155:4596–4603.

    PubMed  CAS  Google Scholar 

  12. Cheng PC, Dykstra ML, Mitchell RN, Pierce SK: A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med 1999;190:1549–1560.

    Article  PubMed  CAS  Google Scholar 

  13. Cheng PC, Cherukuri A, Dykstra M, et al: Floating the raft hypothesis: the roles of lipid rafts in B cell antigen receptor function. Semin Immunol 2001;13:107–114.

    Article  PubMed  CAS  Google Scholar 

  14. Baumann, G, Maier D, Freuler F, Tschopp C, Baudisch K, Wienands J: In vitro characterization of major ligands for Src homology 2 domains derived from protein tyrosine kinases, from the adaptor protein SHC and from GTPase-activating protein in Ramos B cells. Eur J Immunol 1994;24:1799–1807.

    Article  PubMed  CAS  Google Scholar 

  15. Wienands J, Freuler F, Baumann G: Tyrosine-phosphorylated forms of Igβ, CD22, TCR zeta and HOSS are major ligands for tandem SH2 domains of Syk. Int Immunol 1995;7:1701–1708.

    Article  PubMed  CAS  Google Scholar 

  16. Rowley RB, Burkhardt AL, Chao HG, Matsueda GR, Bolen JB: Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Ig alpha/Ig beta immunoreceptor tyrosine activation motif binding and autophosphorylation. J Biol Chem 1995;270:11590–11594.

    Article  PubMed  CAS  Google Scholar 

  17. Kurosaki T: Genetic analysis of B cell antigen receptor signaling. Annu Rev Immunol 1999;17:555–592.

    Article  PubMed  CAS  Google Scholar 

  18. Pao LI, Famiglietti SJ, Cambier JC: Asymmetrical phosphorylation and function of immunoreceptor tyrosine-based activation motif tyrosines in B cell antigen receptor signal transduction. J Immunol 1998;160:3305–3314.

    PubMed  CAS  Google Scholar 

  19. Kim TJ, Kim YT, Pillai S: Association of activated phosphatidylinositol 3-kinase with p120cbl in antigen receptor-ligated B cells. J Biol Chem 1995;270:27504–27509.

    Article  PubMed  CAS  Google Scholar 

  20. Ingham RJ, Holgado-Madruga M, Siu C, Wong AJ, Gold MR: The Gab1 protein is a docking site for multiple proteins involved in signaling by the B cell antigen receptor. J Biol Chem 1998;273:30630–30637.

    Article  PubMed  CAS  Google Scholar 

  21. Buhl AM, Cambier JC: Phosphorylation of CD19Y484 and Y515, and linked activation of phosphatidylinositol 3-kinase, are required for B cell antigen receptor-mediated activation of Bruton's tyrosine kinase. J Immunol 1999;162:4438–4446.

    PubMed  CAS  Google Scholar 

  22. Okada T, Maeda A, Iwamatsu A, Gotoh K, Kurosaki T: BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 2000;13:817–827.

    Article  PubMed  CAS  Google Scholar 

  23. Gold MR: To make antibodies or not: signaling by the B-cell antigen receptor. Trends Pharmacol Sci 2002;23:316–324.

    Article  PubMed  CAS  Google Scholar 

  24. Salim K, Bottomley MJ, Querfurth E, et al: Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J 1996;15:6241–6250.

    PubMed  CAS  Google Scholar 

  25. Varnai P, Rother KI, Balla T: Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 1999;274:10983–10989.

    Article  PubMed  CAS  Google Scholar 

  26. Saito K, Scharenberg AM, Kinet JP: Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem 2001;276:16201–16206.

    Article  PubMed  CAS  Google Scholar 

  27. Mahajan S, Fargnoli J, Burkhardt AL, Kut SA, Saouaf SJ, Bolen JB: Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase. Mol Cell Biol 1995;15:5304–5311.

    PubMed  CAS  Google Scholar 

  28. Rawlings DJ, Scharenberg AM, Park H, et al: Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science 1996;271:822–825.

    Article  PubMed  CAS  Google Scholar 

  29. Kurosaki T, Maeda A, Ishiai M, Hashimoto A, Inabe K, Takata M: Regulation of the phospholipase C-gamma2 pathway in B cells. Immunol Rev 2000;176:19–29.

    Article  PubMed  CAS  Google Scholar 

  30. Ishiai M, Kurosaki M, Pappu R, et al: BLNK required for coupling Syk to PLC gamma 2 and Rac1-JNK in B cells. Immunity 1999;10:117–125.

    Article  PubMed  CAS  Google Scholar 

  31. Hashimoto S, Iwamatsu A, Ishiai M, et al: Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK-functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood 1999;94:2357–2364.

    PubMed  CAS  Google Scholar 

  32. Kurosaki T, Tsukada S: BLNK: connecting Syk and Btk to calcium signals. Immunity 2000;12:1–5.

    Article  PubMed  CAS  Google Scholar 

  33. Kurosaki T, Maeda A, Ishiai M, Hashimoto A, Inabe K, Takata M: Regulation of the phospholipase C-gamma2 pathway in B cells. Immunol Rev 2000;176:19–29.

    Article  PubMed  CAS  Google Scholar 

  34. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI: Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997;386:855–858.

    Article  PubMed  CAS  Google Scholar 

  35. Saijo K, Mecklenbrauker I, Santana A, Leitger M, Schmedt C, Tarakhovsky A: Protein kinase C beta controls nuclear factor kappa B activation in B cells through selective regulation of the IkappaB kinase alpha. J Exp Med 2002;195:1647–1652.

    Article  PubMed  CAS  Google Scholar 

  36. Su TT, Guo B, Kawakami Y, et al: PKC-beta controls I kappa B kinase lipid raft recruitment and activation in response to BCR signaling. Nat Immunol 2002;3:780–786.

    PubMed  CAS  Google Scholar 

  37. Niiro H, Clark EA: Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2002;2:945–956.

    Article  PubMed  CAS  Google Scholar 

  38. Dieterlen-Lievre F: Hemopoietic cell progenitors in the avian embryo: origin and migrations. Ann NY Acad Sci 1987;511:77–87.

    Article  PubMed  CAS  Google Scholar 

  39. Le Douarin NM, Dieterlen-Lievre F, Oliver PD: Ontogeny of primary lymphoid organs and lymphoid stem cells. Am J Anat 1984;170:261–299.

    Article  PubMed  Google Scholar 

  40. Reynaud CA, Imhof BA, Anquez V, Weill JC: Emergence of committed B lymphoid progenitors in the developing chicken embryo. EMBO J 1992;11:4349–4358.

    PubMed  CAS  Google Scholar 

  41. Benatar T, Tkalec L, Ratcliffe MJH: Stochastic rearrangement of immunoglobulin variable region genes in chicken B-cell development. Proc Natl Acad Sci USA 1992;89:7615–7619.

    Article  PubMed  CAS  Google Scholar 

  42. Reynaud CA, Anquez V, Dahan A, Weill JC: A single rearrangement event generates most of the chicken immunoglobulin light chain diversity. Cell 1985;40:283–291.

    Article  PubMed  CAS  Google Scholar 

  43. Thompson CB, Neiman PE: Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell 1987; 48:369–378.

    Article  PubMed  CAS  Google Scholar 

  44. Reynaud CA, Dahan A, Anquez V, Weill JC: Somatic hyperconversion diversifies the single Vh gene of the chicken with a high incidence in the D region. Cell 1989;59:171–183.

    Article  PubMed  CAS  Google Scholar 

  45. Reynaud CA, Anquez V, Grimal H, Weill JC: A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell 1987;48:379–388.

    Article  PubMed  CAS  Google Scholar 

  46. Reynaud CA, Bertocci B, Dahan A, Weill JC: Formation of the chicken B-cell repertoire: ontogenesis, regulation of Ig gene rearrangement, and diversification by gene conversion Adv Immunol 1994;57:353–378.

    PubMed  CAS  Google Scholar 

  47. McCormack WT, Thompson CB: Somatic diversification of the chicken immunoglobulin light chain gene. Adv Immunol 1990;48:41–67.

    Article  PubMed  CAS  Google Scholar 

  48. Carlson LM, McCormack WT, Postema CE, Humphries EH, Thompson CB: Templated insertions in the rearranged chicken IgL V gene segment arise by intrachromsomal gene conversion. Genes Dev 1990;4:536–547.

    Article  PubMed  CAS  Google Scholar 

  49. Sayegh CE, Demaries SL, Iacampo S, Ratcliffe MJH: Development of B cells expressing surface immunoglobulin molecules that lack V(D)J-encoded determinants in the avian embryo bursa of fabricius. Proc Natl Acad Sci USA 1999;96:10806–10811.

    Article  PubMed  CAS  Google Scholar 

  50. Hughes SH, Greenhouse JJ, Petropoulos CJ, Sutrave P: Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol 1987;61:3004–3012.

    PubMed  CAS  Google Scholar 

  51. Monroe JG: Ligand-independent tonic signaling in B cell receptor function. Curr Opin Immunol 2004;16:288–295.

    Article  PubMed  CAS  Google Scholar 

  52. Fuentes-Panana EM, Bannish G, Monroe JG: Basal B-cell receptor signaling in B lymphocytes: mechanisms of regulation and role in positive selection, differentiation, and peripheral survival. Immunol Rev 2004;197:26–40.

    Article  PubMed  CAS  Google Scholar 

  53. Mizuno K, Tagawa Y, Mitomo K, et al: Src homology region 2 (SH2) domain-containing phosphatase-1 dephosphorylates B cell linker protein/SH2 domain leukocyte protein of 65 kDa and selectively regulates c-Jun NH2-terminal kinase activation in B cells. J Immunol 2000;165:1344–1351.

    PubMed  CAS  Google Scholar 

  54. Adachi T, Flaswinkel H, Yakura H, Reth M, Tsubata T: The B cell surface protein CD72 recruits the tyrosine phosphatase SHP-1 upon tyrosine phosphorylation. J Immunol 1998;160:4662–4665.

    PubMed  CAS  Google Scholar 

  55. Pike KA, Iacampo S, Friedmann JE, Ratcliffe MJH: The cytoplasmic domain of Igα is necessary and sufficient to support efficient early B cell development. J Immunol 2004;172:2210–2218.

    PubMed  CAS  Google Scholar 

  56. Pike KA, Ratcliffe MJH: Dual requirement for the Igα immunoreceptor tyrosine-based activation motif (ITAM) and a conserved non-Igα ITAM tyrosine in supporting Igα/β mediated B cell development. J Immunol 2005;174:2012–2020.

    PubMed  CAS  Google Scholar 

  57. Wienands J, Larbolette O, Reth M: Evidence for a preformed transducer complex organized by the B cell antigen receptor. Proc. Natl Acad Sci USA 1996;93: 7865–7870.

    Article  PubMed  CAS  Google Scholar 

  58. Ohnishi K, Melchers F: The nonimmunoglobulin portion of lambda5 mediates cell-autonomous pre-B cell receptor signaling. Nat Immunol 2003;4:849–856.

    Article  PubMed  CAS  Google Scholar 

  59. Shaffer AL, Schlissel MS: A truncated heavy chain protein relieves the requirement for surrogate light chains in early B cell development. J Immunol 1997;159: 1265–1275.

    PubMed  CAS  Google Scholar 

  60. Muljo SA, Schlissel MS: The variable, C(H)1, C(H)2 and C(H)3 domains of Ig heavy chain are dispensable for pre-BCR function in transgenic mice. Int Immunol 2002;14:577–584.

    Article  PubMed  CAS  Google Scholar 

  61. Tolar P, Sohn HW, Pierce SK: The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol 2005;6:1168–1176.

    Article  PubMed  CAS  Google Scholar 

  62. Guo B, Kato RM, Garcia-Lloret M, Wahl MI, Rawlings DJ: Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 2000;13:243–253.

    Article  PubMed  CAS  Google Scholar 

  63. Fuentes-Panana EM, Bannish G, van der V, King LB, Monroe JG: Igα/Igβ complexes generate signals for B cell development independent of selective plasma membrane compartmentalization. J Immunol 2005;174:1245–1252.

    PubMed  CAS  Google Scholar 

  64. Cassard S, Salamero J, Hanau D, et al: A tyrosine-based signal present in Igα mediates B cell receptor constitutive internalization. J Immunol 1998;160:1767–1773.

    PubMed  CAS  Google Scholar 

  65. Cheng AM, Rowley B, Pao W, Hayday A, Bolen JB, Pawson T: Syk tyrosine kinase required for mouse viability and B-cell development. Nature 1995;378:303–306.

    Article  PubMed  CAS  Google Scholar 

  66. Turner M, Mee PJ, Costello PS, et al: Perinatal lethality and blocked B cell development in mice lacking the tyrosine kinase Syk. Nature 1995;378:298–302.

    Article  PubMed  CAS  Google Scholar 

  67. Kohler F, Storch B, Kulathu Y, et al: A leucine zipper in the N terminus confers membrane association to SLP-65. Nat Immunol 2005;6:204–210.

    Article  PubMed  CAS  Google Scholar 

  68. Chiu CW, Dalton M, Ishiai M, Kurosaki T, Chan AC: BLNK: molecular scaffolding through ‘cis’-mediated organization of signaling proteins. EMBO J 2002;21:6461–6472.

    Article  PubMed  CAS  Google Scholar 

  69. Schneider K, Kothlow S, Schneider P, et al: Chicken BAFF—a highly conserved cytokine that mediates B cell survival. Int Immunol 2004;16:139–148.

    Article  PubMed  CAS  Google Scholar 

  70. Koskela K, Nieminen P, Kohonen P, Salminen H, Lassila O: Chicken B cell activating factor: regulator of B-cell survival in the bursa of Fabricius. Scand J Immunol 2004;59:449–457.

    Article  PubMed  CAS  Google Scholar 

  71. Paramithiotis E, Jacobsen KA, Ratcliffe MJH: Loss of surface immunoglobulin expression precedes B cell death by apoptosis in the bursa of Fabricius. J Exp Med 1995;181:105–113.

    Article  PubMed  CAS  Google Scholar 

  72. Jacobsen KA, Paramithiotis E, Ewert DL, Ratcliffe MJH: Apoptotic cell death in the chicken bursa of Fabricius. Adv Exp Med Biol 1996;406:155–165.

    PubMed  CAS  Google Scholar 

  73. Sayegh CE, Rao MA, Ratcliffe MJH: Avian B cell development: lessons from transgenic models. Vet Immunol Immunopathol 1999;72:31–37.

    Article  PubMed  CAS  Google Scholar 

  74. Fleming HE, Paige CJ: Pre-B cell receptor signaling mediates selective response to IL-7 at the pro-B to pre-B cell transition via an ERK/MAP kinase-dependent pathway. Immunity 2001;15:521–531.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pike, K.A., Ratcliffe, M.J.H. Ligand-independent signaling during early avian B cell development. Immunol Res 35, 103–115 (2006). https://doi.org/10.1385/IR:35:1:103

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:35:1:103

Key Words

Navigation