Skip to main content
Log in

Oxidative stress in NRTI-induced toxicity

Evidence from clinical experience and experiments in vitro and in vivo

  • Reviews
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

This article reviews the relationship of oxidative stress with nucleoside reverse transcriptase inhibitor (NRTI)-induced toxicity and suggests how oxidative stress may participate in NRT1-mediated toxicity. NRTIs are pro-drugs that require intracellular phosphorylation to their 5′ triphophates by cellular kinases to inhibit viral and mitochondrial DNA (mtDNA) replication. NRTIs in highly active antiretroviral therapy have decreased morbidity and mortality, but side effects can be limiting after prolonged use. These side effects may be linked through mitochondrial dyfunction arising from altered mtDNA replication and oxidative stress via destruction of elements of mtDNA replication, decreased oxidative phosphorylation, and cellular function. Although oxidative stress is associated with NRTI therapy, there is still debate about whether it plays a direct role in NRTI-induced toxicity. The impact of oxidative stress on cardiovascular disease is likely to increase, because patients with HIV infection are living longer as a result of effective antiretroviral therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Clercq, E. (2002). Strategies in the design of antiviral drugs. Nat. Rev. Drug. Discov. 1:13–25.

    Article  PubMed  CAS  Google Scholar 

  2. Barre-Sinoussi, F., Chermann, J.C., Rey, F., Nugeyre, M.T., Chamaret, S., Gruest, J., et al. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871.

    Article  PubMed  CAS  Google Scholar 

  3. Popovic, M., Sarngadharan, M.G., Read, E., and Gallo, R.C. (1984). Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224:497–500.

    Article  PubMed  CAS  Google Scholar 

  4. Lewis, W., Copeland, W.C., and Day, B.J. (2001). Mitochondrial dna deleption, oxidative stress, and mutation mechanisms of dysfunction from nucleoside reverse transcriptase inhibitors. Lab. Invest. 81:777–790.

    PubMed  CAS  Google Scholar 

  5. Lim, S.E. and Copeland, W.C. (2001). Differential incorporation and removcal of antiviral deoxynucleotides by human DNA polymerase gamma. J. Biol. Chem. 276: 23616–23623.

    Article  PubMed  CAS  Google Scholar 

  6. Barthelemy, C., Ogier de Baulny, H., Diaz, J., Cheval, M.A., Frachon, P., Romero, N., et al. (2001) Late-onset mitochondrial DNA depletion: DNA copy number, mutritiple deletions, and compensation. Ann. Neurol. 49:607–617.

    Article  PubMed  CAS  Google Scholar 

  7. Linnane, A.W., Marzuki, S., Ozawa, T., and Tanaka, M. 1989. Mitochondrial DNA mutations as an important contribution to ageing and degenerative disease. Lancet 1: 642–645.

    Article  PubMed  CAS  Google Scholar 

  8. Fukushima, T., Tawara, T., Isobe, A., Hojo, N., Shiwaku, K., and Yamane, Y. (1995). Radical formation site of cerebral complex I and Parkinson’s disease. J. Neurosci. Res. 42:385–390.

    Article  PubMed  CAS  Google Scholar 

  9. Birkus, G., Hitchock, M.J. and Cihlar, T. (2002) Assessment of mitochondrial toxichondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrob. Agents Chemother. 46: 716–723.

    Article  PubMed  CAS  Google Scholar 

  10. Lewis, W., Gonzalez, B., Chomyn, A., and Papoian, T. (1992). Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. J. Clin. Invest. 89:1354–1360.

    Article  PubMed  CAS  Google Scholar 

  11. Pan-Zhou, X.R., Cui, L., Zhou, X.J., Sommadossi, J.P., and Darley-Usmar, V.M. (2000). Differential effects of antiretroviral nucleoside analogs on mitochondrial function in HepG2 cells. Antimicrob. Agents Chemother. 44: 496–503.

    Article  PubMed  CAS  Google Scholar 

  12. Yamaguchi, T., Katoh, I., and Kurata, S. (2002) Azidothymidine causes functional and structural destruction of mitochondria, glutathione deficiency and HIV-1 promoter sensitization. Eur. J. biochem. 269;2782–2788.

    Article  PubMed  CAS  Google Scholar 

  13. Gerschenson, M., Nguyen, V.T., St Claire, M.C., Harbaugh, S.W., Haubaugh, J.W., Proia, L.A., et al. (2001). Chronic stavudine exposure induces hepatic mitochondrial toxicith in adult Ethyrocebus pata monkeys. J. Hum. Vitrol. 4:335–342.

    CAS  Google Scholar 

  14. Taylor, E.R., Hurrell, F., Shannon, R.J., Lin, T.K., Hirst, J., and Murphy, M.P. (2003). Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 278:19603–19610.

    Article  PubMed  CAS  Google Scholar 

  15. Miura, T., Goto, M., Hosoya, N., Odawara, T., Kitamura, Y., Nakamura, T., et al. (2003). Depletion of mitochondrial DNA in HIV-1-infected patients and its amelioration by antiretroviral therapy. J. Med. Virol. 70:497–505.

    Article  PubMed  CAS  Google Scholar 

  16. Miro, O., Lopez, S., Pedrol E, Rodrigue-Santiago, B., Martinez, E., Soler, A., et al. (2003). Mitochondrial DNA depletion and respiratory chain enzyme deficiencies are present in peripheral blood mononuclear cells of HIV-infected patients with HAART-related lipodystroph. Antivir. Ther. 8:333–338.

    PubMed  CAS  Google Scholar 

  17. Nolan, D., Hammond, E., Martin, A., Taylor, L., Herrmann, S., McKinnon, E. et al. (2003). Mitochrondrial DNA depletion and morphologic changes in adipocytes associated with nucleoside reverse transcriptase inhibitor therapy. AIDS 17: 1329–1338.

    Article  PubMed  CAS  Google Scholar 

  18. Carr, A., Samaras, K., Thorisdottir, A., Kaufmann, G.R., Chisholm, D.J., and Coopr, D.A. (1999) Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet 353:2093–2099.

    Article  PubMed  CAS  Google Scholar 

  19. Saint-Marc, T. and Touraine, J.L. (1999). The effects of distinuing stavudine therapy on clinical and metabolic abnormalities in patients suffering from lipodystrophy. AIDS 13:2188–2189.

    Article  PubMed  CAS  Google Scholar 

  20. McConsey, G. A. and Morrow, J.D. (2003). Lipid oxidative markers are significantly increased in lipoatrophy but not in sustained asymptomatic hyperlactatemia. J. Acquir. Immune Defic. Syndr. 34:45–49.

    Article  Google Scholar 

  21. Aruoma, O.I., Kaur, H., and Halliwell, B (1991). Oxygen free radical and human diseases. J. R. Soc. Health 111: 172–177.

    PubMed  CAS  Google Scholar 

  22. Halliwell, B. (1996). Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem. Soc. Trans. 24:1023–1027.

    PubMed  CAS  Google Scholar 

  23. Boveris, A. and Chance, B. (1973). The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134:707–716.

    PubMed  CAS  Google Scholar 

  24. Freeman, B. A. and Carpo, J. D. (1981). Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256:10986–10992.

    PubMed  CAS  Google Scholar 

  25. Turrens, J.F., Freeman, B.A., Levitt, J.G., and Crapo, J.D. (1982). The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217:401–410.

    Article  PubMed  CAS  Google Scholar 

  26. Nohl, H., Jordan, W., and Hegner, D. (1982). Mitochondrial formation of OH Radicals by an ubisemiquinome-dependent reaction an alternative pathway to the ironcatalysed Haber-Weiss cycle. Hoppe Seylers Z. Physiol. Chem. 363:599–607.

    PubMed  CAS  Google Scholar 

  27. Nathan, C. and Xie, Q. W. (1994). Nitroic oxide synthases: roles, tolls, and controls. Cell 78:915–918.

    Article  PubMed  CAS  Google Scholar 

  28. Brown, G.C. (2001). Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biocheim. Biophys. Acta 1504:46–57.

    Article  CAS  Google Scholar 

  29. Beckman,J.S. and Koppenol, W.H. (1996). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271:1424–1437.

    Google Scholar 

  30. Radi, R., Beckman, J.S., Busk, K.M., and Freeman, B.A. (1991). Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288:481–487.

    Article  PubMed  CAS  Google Scholar 

  31. Cortopassi, G. and Wang, E. (1995). Modelling the effects of age-related mtDNA mutation accumulation; complex I deficiency, superoxide and the death. Biochim. Biophys. Acta 1271: 171–176.

    PubMed  Google Scholar 

  32. Fridovich, I. (1995). Superoxide radical and superoxide dismutase. Annu. Rev. Biochem. 64:97–112.

    Article  PubMed  CAS  Google Scholar 

  33. Buckley, B.J., Tanswell, A.K., and Freeman, B.A. (1987), Liposome-mediated augmentation of catalase in alveolar type II cells protects against H2O2 injury. J. Appl. Physiol. 63:359–367.

    PubMed  CAS  Google Scholar 

  34. Arthur, J.R. (2000). The glutahione peroxidase. Cell. Mol. Life Sci. 57:1825–1835.

    Article  PubMed  CAS  Google Scholar 

  35. Rahman, Q., Abidi, P., Afaq, F., Schiffmann, D., Mossman, B.T., Kamp, D.W., et al. (1999). Glutathione redox system in oxidative lung injury. Crit. Rev. Toxicol. 29:543–568.

    Article  PubMed  CAS  Google Scholar 

  36. Sutliff, R.L., Dikalov, S., Weiss, D., Parker, J., Raidel, S., Rancine, A.K., et al. (2002). Nucleoside reverse transcriptase inhibitors impair endothelium-dependent relax-action by increasing superoxide. Am. J. Physiol. Heart Circ. Physiol. 283:H2363-H2370.

    PubMed  CAS  Google Scholar 

  37. Szabados, E., Fischer, G.M., Toth, K., Csete, B., Nemeti, B., Trobitas, K., et al. (1999). Role of reactive oxygen species and poly-ADP-ribose polymerase in the development of AZT-induced cardiomyopathy in rat. Free Radic. Biol. Med. 26:309–317.

    Article  PubMed  CAS  Google Scholar 

  38. Skuta, G., Fischer, G.M., Janaky, T., Kele, Z., Szabo, P., Tozser, J., et al. (1999). Molecular mechanism of the short-term cardiotoxicity caused by 2′,3′-dideoxycytidine (ddC): modulation of reactive oxygen species levels and ADP-ribosylation reactions. Biochem. Pharmacol. 58:1915–1925.

    Article  PubMed  CAS  Google Scholar 

  39. Bialkowska, A., Bialkowski, K., Gerschenson, M., Diwan, B.A., Jones, A.B., Olivero, O.A., et al. (2000). Oxidative DNA damage infetal tissues after transplacental exposure to 3′-azido-3′-deoxythymidine (AZT). Carcinogenesis 21:1059–1062.

    Article  PubMed  CAS  Google Scholar 

  40. Prakash, O., Teng, S., Ali, M., Zhu, X., Coleman, R., Dabdoub, R.A., et al. (1997). The human immunodeficiency virus type 1 Tat, protein potentiates zidovudine-induced cellular toxicity in transgemnic mice. Arch. Biochem. Biophys. 343:173–180.

    Article  PubMed  CAS  Google Scholar 

  41. Hayakawa, M., Ogawa, T., Sugiyama, S., Tanaka, M., and Ozawa, T (1991). Massive conversion of guanosine to 8-hydroxy-guanosine in mouse liver mitochondrial DNA by administration of azidothymidine. Biochem. Biophys. Res. Communun. 176:87–93.

    Article  CAS  Google Scholar 

  42. Velor, L.W., Kovacevic, M., Goldstein, M., Leitner, H.M., Lewis, A., and Day, B.J. (2004). Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine. Toxicol. Appl. Pharmacol. 1:10–19.

    Article  CAS  Google Scholar 

  43. Gardner, P.R. (2002). A conitase: sensitive target and measure of superoxide. Methods Enzymol. 349:9–23.

    PubMed  CAS  Google Scholar 

  44. Yakes, F.M. and Van Houten, B. (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94:514–519.

    Article  PubMed  CAS  Google Scholar 

  45. Graziewicz, M.A., Day, B.J., and Copeland, W.C. (2002) The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Aids Res. 30:2817–2824.

    Article  CAS  Google Scholar 

  46. Paul, S., Bogdanov, M.B., Matson, W.R., Matson, W.R., Metakis, L. Jacobs, J., and Beal, M.F. (2003). Urinary 8-hydroxy-2′-deoxyguanosine, a metabolite of oxidized DNA, is not elevated in HIV patients on combination antiretroviral therapy. Free Radic. Res. 37:499–502.

    Article  PubMed  CAS  Google Scholar 

  47. Herskowitz, A., Willoughby, S.B., Baughman, K.L. Schulman, S.P., and Bartlett, J.D. (1992). Cardiomy opathy associated with antiretroviral therapy in patients with HIV infection: a report of six cases. Ann. Intern. Med. 16: 311–313.

    Google Scholar 

  48. Felker, G.M., Thomas, R.E., Hare, J.M., Hruban, R.H., Clemetson, D.E., Howard, D.L., et al. (2000). Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N. Engl. J. Med. 342:1077–1084.

    Article  PubMed  CAS  Google Scholar 

  49. d’Amati, G., Kwan, W., and Lewis, W. (1992). Dilated cardiomyopathy in a zidovudine-treated AIDS patient. Cardiovasc. Pathol. 1:317–320.

    Article  Google Scholar 

  50. Lipshultz, S.E., Easley, K.A., Orav, E.J., Kaplan, S., Stare, T.J., Bricker, J.T., et al. (2000). Absence of cardiac toxic ity of zidovudine in infants. Pediatric Pulmonary and Cardiac Complications of Vertically Trasmitted HIV Infection Study Group. N. Eng. J. Med. 343:759–766.

    Article  CAS  Google Scholar 

  51. Lipshultz, S.E., Orav, E.J., Sanders, S.P., Hale, A.R., McIntosh, K., and Colan, S.D.. (1992). Cardiac structure and function in children with human immunodeficiency virus infection treated with zidovudine. N. Engl. J. Med. 327:1260–1265.

    Article  PubMed  CAS  Google Scholar 

  52. Jay, C., and Dalakas, M. C. (1994). in Pediatric AIDS (Pizzo, P.A. and Wilfert, C.M., eds.), Williams and Wilkins, Baltimore, pp. 559–573.

    Google Scholar 

  53. Domanski, M.J., Sloas, M.M., Follmann, D.A., Scalise, P.P. 3rd, Tucker, E.E., Egan, E., et al. (1995). Effect of zidovudine and didanosine treatment on heart function in children infected with human immunodeficiency virus. J. Pediatr. 127:137–146.

    Article  PubMed  CAS  Google Scholar 

  54. Gerschenson, M., Erhart, S.W., Paik, C.Y., St. Claire, M.C., Nagashima, K., Skopets, B., et al. (2000). Fetal mitochondrial heart and skeletal muscle damage in Erythrocebus patas monkeys exposed in utero to 3′-azido-3−deoxythymidine. AIDS Res. Hum. Retroviruses 16:635–644.

    Article  PubMed  CAS  Google Scholar 

  55. Corcuera Pindado, M.T., Lopez Bravo, A., Martinez-Rodriguez, R., Picazo Talavera, A., Gomez Aguado, F., Roldan Contreras, M., et al. (1994). Histochemical and ultrastructural changes induced by zidovudine in mitochondria of rat cardiac muscle. Eur. J. Histochem. 38:311–318.

    PubMed  CAS  Google Scholar 

  56. Lamperth, L., Dalakas, M.C., Dagani, F., Anderson, J., and Ferrari, R. (1991). Abnormal skeletal and cardiac muscle mitochondria induced by zidovudine (AZT) in human muscle in vitro and in an animal model. Lab. Invest. 65:741–751.

    Google Scholar 

  57. Lewis, W., Papoian, T., Gonzalez, B., Louie, H., Kelly, D.P., Payne, R.M., et al. (1991). Mitochondrial ultrastructural and molecular changes induced by zidovudine in rat hearts. Lab. Invest. 65:228–236.

    PubMed  CAS  Google Scholar 

  58. Legrand-Poels, S., Vaira, D., Pincemail, J., van de Vorst, A., and Piette, J. (1990). Activation of human immunode-ficiency virus type 1 by oxidative stress. AIDS Res. Hum. Retroviruses 6:1389–1397.

    Article  PubMed  CAS  Google Scholar 

  59. Raidel, S.M., Haase, C, Jansen, N.R., Russ, R.B., Sutliff, R.L., Velsor, L.W., et al. (2002). Targeted myocardial transgenic expression of HIV Tat causes cardiomyopathy and mitochondrial damage. Am. J. Physiol. Heart Circ. Physiol. 282:H1672-H1678.

    PubMed  CAS  Google Scholar 

  60. Flores, S.C., Marecki, J.C., Harper, K.P., Bose, S.K., Nelson, S.K., and McCord, J.M. (1993). Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc. Natl. Acad. Sci. USA 90:7632–7636.

    Article  PubMed  CAS  Google Scholar 

  61. Choi, J., Liu, R.M., Kundu, R.K., Sangiorgi, F., Wu, W., Maxson, R., et al. (2000). Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J. Biol. Chem. 275:3693–3698.

    Article  PubMed  CAS  Google Scholar 

  62. Lewis, W., Haase, C.P., Raidel, S.M., Russ, R.B., Sutliff, R.L., Hoit, B.D., et al. (2001). Combined antiretroviral therapy causes cardeiomyopathy and elevates plasma lactate in transgenic AIDS mice. Lab. Invest. 81:1527–1536.

    PubMed  CAS  Google Scholar 

  63. Okuda, M., Li, K., Beard, M.R., Showalter, L.A., Scholle, F., Lemon, S.M., et al. (2002). Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122:366–375.

    Article  PubMed  CAS  Google Scholar 

  64. Waris, G., Huh, K.W., and Siddiqui, A. (2001). Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Mol. Cell. Biol. 21: 7721–7730.

    Article  PubMed  CAS  Google Scholar 

  65. Swietek, K., and Jusczyk, J. (1997). Reduced glutathione concentration in erythrocytes of patients with acute and chronic viral hepatitis. J. Viral. Hepat. 4:139–141.

    PubMed  CAS  Google Scholar 

  66. Welch, K., Finkbeiner, W., Alpers, C.E., Blumenfeld, W., Davis, R.L., Smuckler, E.A., et al. (1984). Autopsy findings in the acquired immune deficiency syndrome. JAMA 252:1152–1159.

    Article  PubMed  CAS  Google Scholar 

  67. Cammarosano, C., and Lewis, W. (1985). Cardiac lesions in acquired immune deficiency syndrome (AIDS). J. Am. Coll. Cardiol. 5:703–706.

    Article  PubMed  CAS  Google Scholar 

  68. Reilly, J.M., Cunnion, R.E., Anderson, D.W., O’Leary, T.J., Simmons, J.T., Lane, H.C., et al. (1988). Frequency of myocarditis, left ventricular dysfunction and ventricular tachycardia in the acquired immune deficiency syndrome. Am. J. Cardiol. 62:789–793.

    Article  PubMed  CAS  Google Scholar 

  69. Lewis, W. (1989). AIDS: cardiac findings from 115 autopsies. Prog. Cardiovasc. Dis. 32:207–215.

    Article  PubMed  CAS  Google Scholar 

  70. Lewis, W. (2000). Atherosclerosis in AIDS: potential pathogenetic roles of antiretroviral therapy and HIV. J. Mol. Cell. Cardiol. 32:2115–2129.

    Article  PubMed  CAS  Google Scholar 

  71. Anderson, D.W., and Virmani, R. (1990). Emerging patterns of heart disease in human immunodeficiency virus infection. Hum. Pathol. 21:253–259.

    Article  PubMed  CAS  Google Scholar 

  72. Cohen, I.S., Anderson, D.W., Virmani, R., Reen, B.M., Macher, A.M., Sennesi, J., et al. (1986). Congestive cardiomyopathy in association with the acquired immunode-ficiency syndrome. N Eng. J. Med. 315:628–630.

    Article  CAS  Google Scholar 

  73. Heidenreich, P.A., Elenberg, M.J., Kee, L.L., Somelofski, C.A., Hollander, H., Schiller, N.B., et al. (1995). Pericardial effusion in AIDS. Incidence and survival. Circulation 92:3229–3234.

    PubMed  CAS  Google Scholar 

  74. Shannon, R.P., Samon, M.A., Mathier, M.A., Geng, Y.J., Mankad, S., and Lackner, A.A. (2000). Dilated cardiomyopathy mates. Circulation 101:185–193.

    PubMed  CAS  Google Scholar 

  75. Ross, R. (1999). Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  76. Rashba-Step, J., Turro, N.J., and Cederbaum, A.I. (1993). Increased NADPH- and NADH-dependent production of superoxide and hydroxyl radical by microsomes after chronic ethanol treatment. Arch. Biochem. Biophys. 300:401–408.

    Article  PubMed  CAS  Google Scholar 

  77. Cithill, A., Wang, X., and Hoek, J.B. (1997). Increased oxidatived damage to mitochondrial DNA following chronic ethanol coasumption. Biochem. Biophys. Res. Commun. 235:286–290.

    Article  Google Scholar 

  78. Mansouri, A., Demeilliers, C., Amsellem, S., Pessayre, D., and Fromenty, B. (2001). Acute ethanol administration oxidatively damages and depletes mitochondrial dna in mouse liver, brain, heart, and skeletal muscles: protective effects of antioxidants. J. Pharmacol. Exp. Ther. 298:737–743.

    PubMed  CAS  Google Scholar 

  79. Fernandez-Checa, J.C., Hirano, T., Tsukamoto, H., and Kaplowitz, N. (1993). Mitochondrial glutathione depletion in alcoholic liver disease. Alcohol 10:469–475.

    Article  PubMed  CAS  Google Scholar 

  80. Chen, L.H., Huang, C.Y., Osio, Y., Fitzpatrick, E.A., and Cohen, D.A. (1993). Effects of chronic alcohol feeding and murine AIDS virus infection on liver antioxidant defense systems in mice. Alcohol Clin. Exp. Res. 17: 1022–1028.

    PubMed  CAS  Google Scholar 

  81. Walker, U.A., Setzer, B., and Volksbeck, S.I. (2000). Toxicity of nucleoside-analogue reverse-transcriptase inhibitors. Lancet 355:1096.

    Article  PubMed  CAS  Google Scholar 

  82. Goujard, C., Vincent, I., Meynard, J.L., Choudet, N., Bollens, D., Rouseeau, C., et al. (2003). Steady-state pharmacokinetics of amprenavir coadministered with ritonavir in human immunodeficiency virus type 1-infected patients. Antimicrob. Agents Chemother. 47:118–123.

    Article  PubMed  CAS  Google Scholar 

  83. Pirmohamed, M., and Park, B.K. (2003). Cytochrome P450 enzyme polymorphisms and adverse drug reactions. Toxicology 192:23–32.

    Article  PubMed  CAS  Google Scholar 

  84. Pociot, F., Lorenzen, T., and Nerup, J. (1993). A manganese superoxide dismutase (SOD2) gene polymorphism in insulin-dependent diabetes mellitus. Dis. Markers 11:267–274.

    PubMed  CAS  Google Scholar 

  85. Van Landeghem, G.F., Tabatabaie, P., Kucinskas, V., Saha, N., and Beckman, G. (1999). Ethnic variation in the mitochondrial targeting sequence polymorphism of MnSOD. Hum. Hered. 49:190–193.

    Article  PubMed  Google Scholar 

  86. Reid, G., Wielinga, P., Zelcer, N., De Haas, M., Van Deemter, L., Wijnholds, J., et al. (2003). Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol. Pharmacol. 5:1048–1051.

    Google Scholar 

  87. Saito, S., Iida, A., Sekine, A., Miura, Y., Ogawa, C., Kawauchi, S., et al. (2002). Identification of 779 genetic variations in eight genes encoding members of the ATP-binding cassette, subfamily C(ABCC/MRP/CFTR). J. Hum. Genet. 47:147–171.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Day PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, B.J., Lewis, W. Oxidative stress in NRTI-induced toxicity. Cardiovasc Toxicol 4, 207–216 (2004). https://doi.org/10.1385/CT:4:3:207

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:4:3:207

Key Words

Navigation