Skip to main content
Log in

Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach

Inducing complex of Rubisco-Rubisco activase

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Having a photocatalyzed characteristic, our previous research had proved that nano-anatase TiO2 is closely related to the photosynthesis of spinach. It could not only improve the light absorbance and the transformation from light energy to electron energy and to active chemical energy but also promote carbon dioxide (CO2) assimilation of spinach. However, the mechanism of carbon reaction promoted by nano-anatase TiO2 remains largely unclear. By electrophoresis and Western blot methods, the results of the experiments proved that Rubisco from the nano-anatase TiO2-treated spinach during the extraction procedure of Rubisco was found to consist of Rubisco and a heavier molecular-mass protein (about 1200 kDa) comprising both Rubisco and Rubisco activase. The Rubisco carboxylase activity was 2.67 times that of Rubisco from the control and it could hydrolyze ATP in the same manner as Rubisco activase. The total sulfhydryl groups and available sulfhydryl groups of the Rubisco were 32-SH and 21-SH per mole of enzyme more than those of the Rubisco purified from the control, respectively. The circular dichroism spectra showed that the secondary structure of Rubisco from the nano-anatase TiO2-treated spinach was very different from Rubisco of the control. It suggested that the mechanism of nano-anatase TiO2 activating Rubisco of spinach was that the complex of Rubsico and Rubisco activase was induced in spinach, which promoted Rubsico carboxylation and increased the rate of photosynthetic carbon reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Wang, Z. M. Guo, T. J. Li, and M. Li, Biomineralized nanostructured materials and plant silicon nutrition, Prog. Chem. 11, 119–128 (1999) (in Chinese).

    CAS  Google Scholar 

  2. R. H. Crabtree, A new type of hydrogen bond, Science 282, 2000–2001 (1998).

    Article  CAS  Google Scholar 

  3. L. Zheng, F. S. Hong, S. P. Lu, and C. Liu, Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach, Biol. Trace Element Res. 104(1), 82–93 (2005).

    Article  Google Scholar 

  4. F. S. Hong, P. Yang, F. Q. Gao, et al., Effect of nano-anatase TiO2 on spectral characterization of photosystem II particles from spinach, Chem. Res. Chin. Univ. 21(2), 196–200 (2005).

    CAS  Google Scholar 

  5. F. S. Hong, F. Yang, C. Liu, et al., Influences of nano-TiO2 on the chloroplast ageing of spinach under light, Biol. Trace Element Res. 104(3), 249–260 (2005).

    Article  CAS  Google Scholar 

  6. F. S. Hong, J. Zhou, C. Liu, et al., Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach, Biol. Trace Element Res. 105(3), 269–280 (2005).

    Article  CAS  Google Scholar 

  7. J. S. Robert, Questions about the complexity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase, Photosynth. Res. 60, 29–42 (1999).

    Article  Google Scholar 

  8. M. A. Parry, P. J. Andralojc, R. A. C. Mitchell, P. J. Madgwick, and A. J. Keys, Manipulation of Rubisco: the amount, activity, function and regulation, J. Exp. Bot. 54(386), 1321–1333 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. A. R. Portis, Jr., Rubisco activase: Rubisco's catalytic chaperone, Photosynth. Res. 75(1), 11–27 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. A. R. Portis, Jr., M. E. Salvucc, and W. L. Ogren, Activation of ribulosebisphosphate carboxylase oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase, Plant Physiol. 82, 967–971 (1986).

    PubMed  CAS  Google Scholar 

  11. A. R. Portis, Jr., The regulation of Rubisco by Rubisco activase, J. Exp. Bot. 46, 1285–1291 (1995).

    CAS  Google Scholar 

  12. E. Sánchez de Jiménez, L. Medrano, and E. Mart ble new member of the molecular chaperone family, Biochemistry 34, 2826–2831 (1995).

    Article  PubMed  Google Scholar 

  13. S. P. Robinson, V. J. Streusand, J. M. Chatifield, et al., Purification and assay of Rubisco activase from leaves, Plant Physiol. 88, 1008–1014 (1988).

    PubMed  CAS  Google Scholar 

  14. Y. Lan and K. A. Mott, Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase using the spectrophotometric assay of Rubisco activity, Plant Physiol. 95, 604–609 (1991).

    PubMed  CAS  Google Scholar 

  15. R. H. Tang and L. R. Li, The progress of studies on Rubisco activase, Chin. Bull. Sci. 10(4), 159–166 (1998) (in Chinese).

    Google Scholar 

  16. Y. Han, G. Chen, and Z. Wang, The progress of studies on Rubisco activase, Chin. Bull. Bot. 17(4), 306–311 (2000) (in Chinese).

    Google Scholar 

  17. W. F. Li, Z. Wang, and Y. Han, Purification and activity characteristic of rubisco activase from wheat leaves, Sci. Agric. Sin. 35(8), 929–933 (2002) (in Chinese).

    CAS  Google Scholar 

  18. R. J. Spreitzer, Questions about the complexity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase, Photosynth. Res. 60, 29–42 (1999).

    Article  CAS  Google Scholar 

  19. F. S. Hong, C. Liu, L. Zheng, et al., Formation of complexes of Rubisco-Rubisco activase from La3+, Ce3+ treatment of Spinach, Sci. China S B 48(1), 67–74 (2005).

    Article  CAS  Google Scholar 

  20. B. B. Buchanan, W. Gruissem, and R. L. Jones, Biochemistry and Molecular Biology of Plants, Science Press American Society of Plant Physiologists, Beijing, pp. 610–626 (2002).

    Google Scholar 

  21. D. I. Arnon, Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris, Plant Physiol. 24, 1–15 (1949).

    PubMed  CAS  Google Scholar 

  22. W. G. Wang and L. R. Li, A simplified purification method of RuBP carboxylase from spinach leaves, Acta Phytophysiol. Sin. 40(3), 256–262 (1980) (in Chinese).

    Google Scholar 

  23. T. Sugiyama, N. Nakayama, M. Ogawa, T. Akazawa, and T. Oda, Structure and function of chloroplast proteins: effect of ρ-chloromercuribenzoate treatment on the ribulose-1,5-bisphosphate carboxylase/oxygenase activity of spinach leaf fraction protein, Arch. Biochem. Biophys. 125, 98–106 (1968).

    Article  PubMed  CAS  Google Scholar 

  24. O. H. Lowry, N. J. Rosebrough, and A. L. Farr, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265–275 (1951).

    PubMed  CAS  Google Scholar 

  25. F. J. Van de Loo and M. E. Salvucci, Activation of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) involves Rubisco activase Trp 16, Biochemistry 35, 8143–8148 (1996).

    Article  PubMed  Google Scholar 

  26. U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of the bacteriophage T4, Nature 277, 680–685 (1970).

    Article  Google Scholar 

  27. E. F. Sambrook and T. Fritsch, eds., Molecular Cloning, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 739–775 (1989).

    Google Scholar 

  28. K. Y. To, M. C. Cheng, L. F. O. Chen, and S. C. G. Chen, Introduction and expression of foreign DNA in isolated spinach chloroplasts by electroporation, Plant J, 10, 737–743 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. A. F. S. A. Habeeb, Reaction of protein sufhydryl group with Ellman's reagent, Methods Enzymol, 227, 457–464 (1972).

    Article  Google Scholar 

  30. A. Perczel, K. Park, and G. D. Fasman, Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: A practical guide, Anal. Biochem. 203, 83–89 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. A. F. Neuwald, L. Aravind, J. L. Spouge, and E. V. Koonin, AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes, Genome Res. 9, 27–43 (1999).

    PubMed  CAS  Google Scholar 

  32. R. J. Spreitzer and M. E. Salvucci, RUBISCO: structure, regulatory interactions, and posibilities for a better enzyme, Annu. Rev. Plant Biol. 53, 449–485 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. Z. L. Zhang and S. Komatsu, Molecular cloning and characterization of cDNAs encoding two isoforms of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice (Oryza sativa L.), J. Biochem. 128, 383–389 (2000).

    PubMed  CAS  Google Scholar 

  34. A. Yokota and N. Tsujimoto, Characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase carrying ribulose 1,5-bisphosphate at its regulatory sites and the mechanism of interaction of this form of the enzyme with ribulose-1,5-bisphosphatecarboxylase/oxygenase activase, Eur. J. Biochem. 204, 901–909 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. C. Büchen-Osmond, A. R. Portis, Jr., and T. J. Andrews, Rubisco activase modifies the appearance of Rubisco in the electron microscope, in Research in Photosynthesis, Volume III, IXth International Congress on Photosynthesis, Nagoya, Japan, August 30-September 4, 1992, N. Murata, ed., Kluwer Academic, Dordrecht, pp. 653–656 (1992).

    Google Scholar 

  36. A. R. Portis, Jr., The Rubisco activase-Rubisco system: an ATPase-dependent association that regulates photosynthesis, in Protein-Protein Interactions in Plant Biology, M. T. McManus, W. L. Laing, and A. C. Allen, eds., Sheffield Academic, Sheffield, UK, pp. 30–52 (2001).

    Google Scholar 

  37. M. E. Salvucci, Subunit interactions of Rubisco activase—polyethylene glycol promotes self-association, stimulates ATPase and activation activities, and enhances interactions with Rubisco, Arch. Biochem. Biophys. 298, 688–696 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. Y. G. Miao and L. R. Li, Purification of Rubisco from rice and its properties compared with those of tobacco, Acta Phytophysiol. Sini. 17(2), 183–191 (1991) (in Chinese).

    CAS  Google Scholar 

  39. T. Takabe and T. Akazawa, The role of sulfhydrl groups in the ribulose-1,5-bisphosphate carboxylase and oxygenase reaction, Arch. Biochem. Biophys. 169, 686–694 (1975).

    Article  PubMed  CAS  Google Scholar 

  40. R. Chollet and L. L. Anderson, Conformational changes associated with the reversible cold inactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase, Biochem. Biophys. Acta 482, 228–240 (1977).

    PubMed  CAS  Google Scholar 

  41. Y. Tomimatsu and J. W. Donovan, Effect of pH, Mg2+, CO2 and mercurials on the circular dichroism, thermal stability and light scattering of ribulose 1,5-bisphosphate carboxylases from alfalfa, spinach and tobacco, Plant Physiol. 68, 808–813 (1981).

    Article  PubMed  CAS  Google Scholar 

  42. T. C. Taylor and I. Andersson, Structural transitions during activation and ligand binding in hexadecameric Rubisco inferred from the crystal structure of the activated unliganded spinach enzyme, Nature Struct. Biol. 3, 95–101 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. A. P. Duff, T. J. Andrews, and P. M. G. Curmi, The transition between the open and closed states of Rubisco is triggered by the inter-phosphate distance of the bound bisphosphate, J. Mol. Biol. 298, 903–916 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. T. C. Taylor and I. Andersson, The structure of the complex between Rubisco and its natural substrate ribulose 1,5-bisphosphate, J. Mol. Biol. 265, 432–444 (1997).

    Article  PubMed  CAS  Google Scholar 

  45. H. A. Schreuder, S. Knight, P. M. G. Curmi, et al., Formation of the active site of ribulose-1,5-bisphosphate carboxylase-oxygenase by a disorder-order transition from the unactivated to the activated form, Proc. Natl. Acad. Sci. USA 90, 9968–9972 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Hong, F., Liu, C. et al. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111, 239–253 (2006). https://doi.org/10.1385/BTER:111:1:239

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:111:1:239

Index Entries

Navigation