Skip to main content
Log in

Human leukocyte antigen (HLA) class I defects in head and neck cancer

Molecular mechanisms and clinical significance

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The potential role of immunological events in the pathogenesis and clinical course of head and neck squamous cell carcinoma (SCCHN) has stimulated interest in the characterization of HLA class I antigen expression in SCCHN lesions, because these molecules play an important role in the interaction of malignant cells with the host's immune system. Therefore in this paper, following a description of the methodology used to analyze HLA class I antigen expression in normal tissues and in malignant lesions, we have reviewed data about the frequency of HLA class I antigen defects in about 500 primary and in about 25 metastatic SCCHN lesions. The mean frequency of total HLA class I antigen loss in primary and metastatic lesions is approx 15% and 40%, respectively. The mean frequency of selective HLA class I antigen loss in primary lesions is approx 37%. This type of abnormality has not been investigated in metastatic lesions so far. The molecular mechanisms underlying HLA class I antigen defects in SCCHN cells have been investigated to a limited extent. The available information suggests that structural defects in β2m genes are rare. In contrast, functional abnormalities of the antigen processing machinery (APM) components are frequent in SCCHN cells. The latter abnormalities are likely to account for the unusual finding that most of SCCHN cell lines are resistant in vitro to HLA class I antigen restricted, tumor antigen (TA)-specific CTL recognition under basal conditions in spite of the expression of TA and HLA class I antigens. CTL recognition of SCCHN cells is restored by incubation with IFN-γ. These in vitro findings provide a mechanism for the association between APM component defects in SCCHN lesions and clinical course of the disease and imply that T cell-based immunotherapy of SCCHN may benefit from the intralesional administration of IFN-γ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenlee RT, Hill-Harmon MB, Murray T, Thun M: Cancer statistics, 2001, CA Cancer J Clin 2001;51:15–36.

    Article  PubMed  CAS  Google Scholar 

  2. Parkin DM, Laara E, Muir CS: Estimates of the world-wide frequency of sixteen major cancers in 1980. Int J Cancer 1988;41:184–197.

    Article  PubMed  CAS  Google Scholar 

  3. Vikram B: Adjuvant therapy in head and neck cancer. CA Cancer J Clin 1998;48:199–209.

    PubMed  CAS  Google Scholar 

  4. Thekdi AA, Ferris RL: Diagnostic assessment of laryngeal cancer. Otolaryngol Clin North Am 2002; 35:953–969, v.

    Article  PubMed  Google Scholar 

  5. Vikram B, Strong EW, Shah JP, Spiro R: Failure at distant sites following multimodality treatment for advanced head and neck cancer. Head Neck Surg 1984; 6:730–733.

    Article  PubMed  CAS  Google Scholar 

  6. Vikram B, Strong EW, Shah JP, Spiro R: Second malignant enoplasms in patients successfully treated with multimodailty treatment for advanced head and neck cancer. Head Neck Surg 1984;6:734–737.

    Article  PubMed  CAS  Google Scholar 

  7. Brinkman JA, Fausch SC, Weber JS, Kast WM: Peptidebased vaccines for cancer immunotherapy. Expert Opin Biol Ther 2004;4:181–198.

    Article  PubMed  CAS  Google Scholar 

  8. Novellino L, Castelli C, Parmiani G: A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 2005;54:187–207.

    Article  PubMed  CAS  Google Scholar 

  9. Dallal RM, Lotze MT: The dendritic cell and human cancer vaccines. Curr Opin Immunol 2000;12:583–588.

    Article  PubMed  CAS  Google Scholar 

  10. Davis MM, Krogsgaard M, Huppa JB, et al.: Dynamics of cell surface molecules during T cell recognition. Annu Rev Biochem 2003;72:717–742.

    Article  PubMed  CAS  Google Scholar 

  11. Mayordomo JI, Zorina T, Storkus WJ, et al.: Bone marrow-derived dendritic cells pulsed with syntheti tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1995;1:1297–1302.

    Article  Google Scholar 

  12. Mayordomo JI, Loftus DJ, Sakamoto H., et al.: Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 1996; 183:1357–1365.

    Article  PubMed  CAS  Google Scholar 

  13. Whiteside TL: Tumor-induced death of immune cells: its mechanisms and consequences. Semin Cancer Biol 2002;12:43–50.

    Article  PubMed  CAS  Google Scholar 

  14. Li D, Jiang W, Bishop JS, Ralston R, O'Malley Jr BW: Combination surgery and nonviral interleukin 2 gene therapy for head and neck cancer. Clin Cancer Res 1999; 5:1551–1556.

    PubMed  CAS  Google Scholar 

  15. Barrera JL, Verastegui E, Meneses A, Zinser J, de la Garza J, Hadden JW: Combination immunotherapy of squamous cell carcinoma, of the head and neck: a phase 2 trial. Arch Otolaryngol Head Neck Surg 2000; 126:345–351.

    PubMed  CAS  Google Scholar 

  16. Li D, Zeiders JW, Liu S, et al.: Combination nonviral cytokine gene therapy for head and neck cancer. Laryngoscope 2001;111:815–820.

    Article  PubMed  CAS  Google Scholar 

  17. Feinmesser R, Hardy B, Sadov R, Shwartz A, Chretien P, Feinmesser M: Report of a clinical trial in 12 patients with head and neck cancer treated intratumorally and peritumorally with multikine. Arch Otolaryngol Head Neck Surg 2003;129:874–881.

    Article  PubMed  Google Scholar 

  18. Smyth MJ, Godfrey DI, Trapani JA: A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2001;2:293–299.

    Article  PubMed  CAS  Google Scholar 

  19. Kaufman HL, Disis ML: Immune system versus tumor: shifting the balance in favor of DCs and effective immunity. J Clin Invest 2004;113:664–667.

    Article  PubMed  CAS  Google Scholar 

  20. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S: Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional signifance. Adv Immunol 2000;74:181–273.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenberg SA, Packard BS, Aebersold PM, et al.: Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma: A preliminary reprot. N Engl J Med 1988;319:1676–1680.

    PubMed  CAS  Google Scholar 

  22. Wolfel T, Klehmann E, Muller C, Schutt KH, Meyerzum Buschenfelde KH, Knuth A: Lysis of human melanoma cells by autologous cytolytic T cell clones. Identification of human histocompatibility leukocyte antigen A2 as a restriction element for three different antigens. J Exp Med 1989;170;797–810.

    Article  PubMed  CAS  Google Scholar 

  23. Crowley NJ, Darrow TL, Quinn-Allen MA, Seigler HF; MHC-restricted recognition of autologous melanoma by tumor-specific cytotoxic T cells Evidence for restriction by a dominant HLA-A allele. J Immunol 1991;146:1692–1699.

    PubMed  CAS  Google Scholar 

  24. Ferrone S, Marincola FM: Loss of HLA class Iantigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 1995;16:487–494.

    Article  Google Scholar 

  25. Sant A, Yewdell J: Antigen processing and recognition. Curr Opin Immunol 2003;15:66–68.

    Article  PubMed  CAS  Google Scholar 

  26. Cresswell P, Lanzavecchia A: Antigen procesing and recognition. Curr Opin Immunol 2001;13:11–12.

    Article  PubMed  CAS  Google Scholar 

  27. Evans M, Borysiewicz LK, Evans AS, et al.: Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitope from human papillomavirus 16 E6. J Immunol 2001;167:5420–5428.

    PubMed  CAS  Google Scholar 

  28. Kuckelkorn U, Ferreira EA, Drung I, Liewer U, Kloetzel PM, Theobald M: The effect of the interferon-gammainducible processing machinery on the generation of a naturally tumor-associated human cytotoxic T lymphocyte epitope within a wild-type and mutant p53 sequence context. Eur J Immunol 2002;32:1368–1375.

    Article  PubMed  CAS  Google Scholar 

  29. Goldberg AL, Rock KL: Proteolysis, proteasomes and antigen presentation. Nature 1992;357:375–379.

    Article  PubMed  CAS  Google Scholar 

  30. Hengel H, Koopmann JO, Flohr T, et al.: Aviral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 1997;6:623–632.

    Article  PubMed  CAS  Google Scholar 

  31. Ortmann B, Copman J, Lehner PJ, et al.: Acritical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 1997;277:1306–1309.

    Article  PubMed  CAS  Google Scholar 

  32. Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P: Roles for calreticulin and a novel glycoprotein. tapasin, in the interaction of MHC class Imolecules with TAP. Immunity 1996;5:103–114.

    Article  PubMed  CAS  Google Scholar 

  33. Snyder HL, Yewdell JW, Bennink JR: Trimming of antigenic petides in an early secretory compartment. J Exp Med 1994;180:2389–2394.

    Article  PubMed  CAS  Google Scholar 

  34. Serwold T, Gaw S, Shastri N: ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nat Immunol 2001;2:644–651.

    Article  PubMed  CAS  Google Scholar 

  35. Stam NJ, Vroom TM, Peters PJ, Pastoors EB, Ploegh HL: HLA-A-and HLA-B-specific monoclonal antibodies reactive with free heavy chains in western blots, in formalin-fixed, paraffin-embedded tissue sections and in cryo-immuno-electron microscopy. Int Immunol 1990; 2:113–125.

    Article  PubMed  CAS  Google Scholar 

  36. Ogino T, Wang X, Kato S, Miyokawa N, Harabuchi Y, Ferrone S: Endoplasmic reticulum chaperone-specific monoclonal antibodies for flow cytometry and immunohistochemical staining. Tissue Antigens 2003;62:385–393.

    Article  PubMed  CAS  Google Scholar 

  37. Kageshita T, Hirai S,. Ono T, Ferrone S: Comparison of the reactivity of frozen and formalin-fixed, paraffinembedded sections of melanoma lesions with anti-HLA class I mAb. Proc. Twelfth International Histocompatibility Workshop and Conference. Vol. II. (Charron, D., ed.) 1997; EDK:737–739.

    Google Scholar 

  38. Campoli M, Cheney R, Rebmann H., et al.: HLA antigen changes and cancer: A 2004 Immunobiology of the Human MHC. Proceedings of the 13th International Histocompatibility Workshop and Conference 2005; IHWG Press: Seattle, WA.

    Google Scholar 

  39. Garrido F, Cabrera T, Accolla RS, et al.: JLA and Cancer, in HLA and Cancer. Genetic Diversity of HLA: Functional and Medical Implications. Vol. I. 1997. Paris: EDK. 445–452.

    Google Scholar 

  40. Houck JR, Sexton FM, Zajdel G: HLA class I and class II antigen expression on squamous cell carcinoma of the head and neck. Arch otolaryngol Head Neck Surg 1990; 116:1181–1185.

    PubMed  CAS  Google Scholar 

  41. Concha A, Esteban F, Cabrera T, Ruiz-Cabello F, Garrido F: Tumor aggressiveness and MHC class I and II antigens in laryngeal and breast cancer. Semin Cancer Biol 1991;2:47–54.

    PubMed  CAS  Google Scholar 

  42. Mattijssen V, De Mulder PH, Schalkwijk L, Manni JJ, Van't Hof-Grootenboer B, Ruiter DJ: HLA antigen expression in routinely processed head and neck squatmous cell carcinoma primary lesions of different sites. Int J Cancer Suppl 1991;6:95–100.

    Article  PubMed  CAS  Google Scholar 

  43. Feenstra M, Rozemuller E, Duran K, et al.: Mutation in the beta 2m gene is not a frequent event in head and neck squamous cell carcinomas. Hum Immunol 1999; 60:697–706.

    Article  PubMed  CAS  Google Scholar 

  44. Feenstra M, Veltkamp M, van Kuik J, et al.: HLA class I expression and chromosomal deletions at 6p and 15q in head and neck squamous cell carcinomas. Tissue Antigens 1999;54:235–245.

    Article  PubMed  CAS  Google Scholar 

  45. Feenstra M, Verdaasdonk M, van der Zwan AW, de Weger R, Slootweg P, Tilanus M: Microsatellite analysis of microdissected tumor cells and 6p high density microsatellite analysis in head, and neck squamous cell carcinomas with down regulated human leukocyte antigen class I expression. Lab Invest 2000;80:405–414.

    PubMed  CAS  Google Scholar 

  46. Cabrera T, Salinero J, Fernandez MA, Garrido A, Esquivias J, Garrido F: High frequency of altered HLA class I phenotypes in laryngeal carcinomas. Hum Immunol 2000;61:499–506.

    Article  PubMed  CAS  Google Scholar 

  47. Grandis JR, Falkner DM, Melhem MF, Gooding WE, Drenning SD, Morel PA: Human leukocyte antigen class I allelic and haplotype loss in squamous cell carcinoma of the head and neck: clinical and immunogenetic consequences. Clin Cancer Res 2000; 6:2794–2802.

    PubMed  CAS  Google Scholar 

  48. Maleno I, Lopez-Nevot MA, Cabrera T, Salinero J, Garrido F: Multiple mechanisms generate HLA class I altered phenotypes in laryngeal carcinomas: high frequency of HLA haplotype loss, associated with loss of heterozygosity in chromosome region 6p21. Cancer Immunol Immunother 2002;51:389–396.

    Article  PubMed  CAS  Google Scholar 

  49. Cabrera CM, Jimenez P, Cabrera T, Esparza C, Ruiz-Cabello F, Garrido F: Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: beta2-microglobulin inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens 2003;61:211–219.

    Article  PubMed  CAS  Google Scholar 

  50. Ogino T, Bandoh N, Hayashi T, Miyokawa N, Harabuchi Y, Ferrone S: Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clin Cancer Res 2003;9:4043–4051.

    PubMed  CAS  Google Scholar 

  51. Weinman EC, Roche PC, Kasperbauer JL, et al.: Characterization of antigen processing machinery and Survivin expression in tonsillar squamous cell carcinoma. Cancer 2003;97:2203–2211.

    Article  PubMed  Google Scholar 

  52. Francke U, Pellegrino MA: Assignment of the major histocompatibility complex to a region of the short arm of human chromosome 6. Proc Natl Acad Sci USA 1977; 74:1147–1151.

    Article  PubMed  CAS  Google Scholar 

  53. Goodfellow PN, Jones EA, Van Heyningen V, et al.: The beta2-microglobulin gene is on chromosome 15 and not in the HL-A region. Nature 1975;254:267–269.

    Article  PubMed  CAS  Google Scholar 

  54. Barnstable CJ, Bodmer WF, Brown G, et al.: Production of monoclonal antibodies to group A erythrocytes HLA and other human cell surface antigens-new tools for genetic analysis. Cell 1978;14:9–20.

    Article  PubMed  CAS  Google Scholar 

  55. Esteban F, Concha A, Huelin C, et al.: Histocompatibility antigens in primary and metastatic squamous cell carcinoma of the larynx. Int J Cancer 1989;43:436–442.

    Article  PubMed  CAS  Google Scholar 

  56. Esteban F, Concha A, Delgado M, et al.: Lack of MHC class I antigens and tumour aggressiveness of the squamous cell carcinoma of the larynx. Br J Cancer 1990; 62:1047–1051.

    PubMed  CAS  Google Scholar 

  57. Murray AK, Vora AR, Parker AJ, Start R, Rees RC: HLA class I alteractions in head and neck squamous cell carcinoma. Biochem Soc Trans 1997;25:266S.

    PubMed  CAS  Google Scholar 

  58. Vora AR, Rodgers S, Parker AJ, Start R, Rees RC, Murray AK: An immunohistochemical study of altered immunomodulatory molecule expression in head and neck squamous cell carcinoma. Br J Cancer 1997; 76:836–844.

    PubMed  CAS  Google Scholar 

  59. Ha PK, Pai SI, Westra WH, et al.: Real-time quantitative PCR demonstrates low prevalence of human papillomavirus type 16 in premalignant and malignant lesions of the oral cavity. Clin Cancer Res 2002;8:1203–1209.

    PubMed  CAS  Google Scholar 

  60. Garcia-Lora A, Algarra I, Garrido F: MHC class I antigens, immune surveilance, and tumor immune escape. J Cell Physiol 2003;195:346–355.

    Article  PubMed  CAS  Google Scholar 

  61. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R: A class I antigen, HLA-G, expressed in human trophoblasts. Science 1990;248:220–223.

    Article  PubMed  CAS  Google Scholar 

  62. Perosa F, Luccarelli G, Prete M, Favoino E, Ferrone S, Dammacco F: Beta 2-microglobulin-free HLA class I heavy chain epitope mimicry by monoclonal antibody HC-10-specific peptide. J Immunol 2003;171:1918–1926.

    PubMed  CAS  Google Scholar 

  63. Kageshita T, Wang Z, Calorini L, et al.: Selective loss of human leukocyte Class I allospecificities and staining of melanoma cells by monoclonal antibodies recognizing monomorphic determinants of class I human leukocyte antigens. Cancer Research 1993;53:3349–3354.

    PubMed  CAS  Google Scholar 

  64. Wang Z, Marincola FM, Rivoltini L, Parmiani G, Ferrone S: Selective histocompatibility leukocyte antigen (HLA)-A2 loss caused by aberrant pre-mRNA splicing in 624MEL28 melanoma cells. J Exp Med 1999; 190:205–215.

    Article  PubMed  CAS  Google Scholar 

  65. Matsui M., Ikeda M, Akatsuka T: High expression of HLA-A2 on an oral squamous cell carcinoma with down-regulated transported for antigen presentation. biochem. Biophys Res Commun 2001;280:1008–1014.

    Article  PubMed  CAS  Google Scholar 

  66. Seliger B, Atkins D, Bock, M, et al: Characterization of human lymphocyte antigen class I antigen-processing machinery defects in renal cell carcinoma lesions with special emphasis on transporter-associated with antigenprocessing down-regulation. Clin Cancer Res 2003; 9:1721–1727.

    PubMed  CAS  Google Scholar 

  67. Romero JM, Jimenez P, Cabrera T, et al: Coordinated downregulation of the antigen presentation machinery and HLA class I/beta2-microglobulin complex is responsible for HLA-ABC loss in bladder cancer. Int J Cancer 2005;113:605–610.

    Article  PubMed  CAS  Google Scholar 

  68. Orgetmen B, McCauley MD, Safa AR: Molecular mechanisms of loss of beta 2-microglobulin expression in drug-resistant breast cancer sublines and its involvement in drug resistance. Biochemistry 1998;37:11679–11691.

    Article  Google Scholar 

  69. Nie Y, Yang G, Song Y, et al.: DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 2001;22:1615–1623.

    Article  PubMed  CAS  Google Scholar 

  70. Serrano A, Tanzarella S, Lionello, I, et al: Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer 2001;94:243–251.

    Article  PubMed  CAS  Google Scholar 

  71. Fonsatti E, Sigalotti L, Coral S, Colizzi F, Altomonte M, Maio M: Methylation-regulated expression of HLA class I antigens in melanoma. Int J Cancer 2003; 105:430–431; author reply 432–433

    Article  PubMed  CAS  Google Scholar 

  72. Ogino T, Wang X, Ferrone S: Modified flow cytometry and cell-ELISA methodology to detect HLA class I antigen processing machinery components in cytoplasm and endoplasmic reticulum. J Immunol Methods 2003; 278:33–44.

    Article  PubMed  CAS  Google Scholar 

  73. Meissner M, Reicher TE, Kunke M, et al: Defects in the HLA class I antigen processing machinery, in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res 2005;11:2552–2560.

    Article  PubMed  CAS  Google Scholar 

  74. Kim JH, Ajaz M, Lokshin A, Lee YJ: Role of antiapoptotic proteins in tumor necrosis factor-related apoptosis-inducing ligan and cisplatin-augmented apoptosis. Clin Cancer Res 2003;9:3134–3141.

    PubMed  CAS  Google Scholar 

  75. Bolot G, David MJ, Taki T, et al.: Analysis of glycosphingolipids of human head and neck carcinomas with comparison to normal tissue. Biochem Mol Biol Int 1998;46:125–135.

    PubMed  CAS  Google Scholar 

  76. Fish RG: Role of gangliosides in tumor progression: a molecular target for cancer therapy. Med Hypotheses 1996;46:140–144.

    Article  PubMed  CAS  Google Scholar 

  77. Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR: Prevalent expression of the immunotimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 2004: 114:560–568.

    Article  PubMed  CAS  Google Scholar 

  78. Lathers DM, Young MR: Increased aberrance of cytokine expression in plasma of patients with more advanced squamous cell carcinoma of the head and neck. Cytokine 2004;25:220–228.

    Article  PubMed  CAS  Google Scholar 

  79. Dong G, Chen Z, Li ZY, Yeh NT, Bancroft CC, Van Waes C: Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res 2001;61: 5911–5918.

    PubMed  CAS  Google Scholar 

  80. Chang CC, Ferrone S: HLA-G in melanoma: can the current controver sies be solved? Semin Cancer Biol 2003; 13:361–369.

    Article  PubMed  CAS  Google Scholar 

  81. Ferris RL: Progress in head and neck cancer immunotherapy: can tolerance and immune suppression be reversed? ORL J Otorhinolaryngol, Relat Spec 2004; 66:332–340.

    Google Scholar 

  82. Meidenbauer N, Zippelius A, Pittet, MJ, et al: High frequency of functionally active Melan-a-specific T cell in a patient with progressive immunoproteasome-deficient melanoma. Cancer Res 2004;64:6319–6326.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferris, R.L., Hunt, J.L. & Ferrone, S. Human leukocyte antigen (HLA) class I defects in head and neck cancer. Immunol Res 33, 113–133 (2005). https://doi.org/10.1385/IR:33:2:113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:33:2:113

Key words

Navigation