Skip to main content
Log in

Concentrations of selected trace elements in human milk and in infant formulas determined by magnetic sector field inductively coupled plasma-mass spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Magnetic sector field inductively coupled plasma-mass spectrometry (ICP-MS) was applied to the reliable determination of the 8 essential trace elements cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), selenium (Se), and vanadium (V) as well as the 7 nonessential and toxic elements silver (Ag), aluminum (Al), arsenic (As), gold (Au), platinum (Pt), scandium (Sc), and titanum (Ti) in 27 transitory and mature human milk samples and in 4 selected infant formulas. This advanced instrumentation can separate spectral overlaps from the analyte signal hampering significantly the determination of many trace elements by conventional ICP-MS. Moreover, superior detection limits in the picogram per liter range can be obtained with such magnetic sector field instruments. Therefore, this is the first study to report the concentrations of the elements Ag, Au, Pt, Sc, Ti, and V in human milk and in infant formulas. Concentrations of Ag (median: 0.41 µg/L; range: <0.13–42 µg/L) and Au (median: 0.29 µg/L; range 0.10–2.06 µg/L) showed large variations in human milk that might be associated with dental fillings and jewelry. Pt concentrations were very low with most of the samples below the method detection limit of 0.01 µg/L. Human milk concentrations of Co (median: 0.19 µg/L), Fe (380 µg/L), Mn (6.3 µg/L), Ni (0.79 µg/L), and Se (17 µg/L) were at the low end of the corresponding reference ranges. Concentrations of Cr (24.3 µg/L) in human milk were five times higher than the high end of the reference range. For Al (67 µg/L), As (6.7 µg/L), and V (0.18 µg/L), most of the samples had concentrations well within the reference ranges. All elemental concentrations in infant formulas (except for Cr) were approximately one order of magnitude higher than in human milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Robberecht, E. Roekens, M. van Caillie-Bertrand, H. Deelstra, and R. Clara, Longitudinal study of the selenium content in human breast milk in Belgium, Acta Paediatr. Scand. 74, 254–258 (1985).

    PubMed  CAS  Google Scholar 

  2. N. Z. Nyazema, O. Mahomva, and W. Andifasi, The levels of zinc in breast milk of urban African women in Zimbabwe, Afr. J. Med. Sci. 18, 159–162 (1989).

    CAS  Google Scholar 

  3. M. Krachler, F. S. Li, E. Rossipal, and K. J. Irgolic, Changes of the concentrations of trace elements in human milk during lactation, J. Trace Elements Med. Biol. 12, 159–176 (1998).

    CAS  Google Scholar 

  4. J. Z. Li, J. Yoshinaga, T. Suzuki, M. Abe, and M. Morita, Mineral and trace element content of human transitory milk identified with inductively coupled plasma atomic emission spectrometry, J. Nutr. Sci. Vitaminol. 36, 65–74 (1990).

    PubMed  CAS  Google Scholar 

  5. E. Coni, P. Falconieri, E. Ferrante, P. Semeraro, E. Beccaloni, A. Stacchini, et al., Reference values for essential and toxic elements in human milk, Ann. Ist. Super. Sanità 26, 119–130 (1990).

    PubMed  CAS  Google Scholar 

  6. E. Coni, G. Bellomonte, and S. Caroli, Aluminium content of infant formulas, J. Trace Elem. Electrolytes Health Dis. 7, 83–86 (1993).

    PubMed  CAS  Google Scholar 

  7. T. Alkanani, J. K. Friel, S. E. Jackson, and H. P. Longerich, Comparison between digestion procedures for the multielemental analysis of milk by inductively coupled plasma mass spectrometry, J. Agric. Food Chem. 42, 1965–1970 (1994).

    Article  CAS  Google Scholar 

  8. M. Krachler, E. Rossipal, and K. J. Irgolic, Trace elements in infant formulas based on cow and soy milk and in Austrian cow milk determined by inductively coupled plasma mass spectrometry, Biol. Trace Element Res. 65, 53–74 (1998).

    CAS  Google Scholar 

  9. E. Rossipal and M. Krachler, Pattern of trace elements in human milk during the course of lactation, Nutr. Res. 18(1), 11–24 (1998).

    Article  CAS  Google Scholar 

  10. T. Prohaska, G. Köllensperger, M. Krachler, K. de Winne, G. Stingeder, and L. Moens, Accurate determination of trace elements in human milk by inductively coupled plasma sector field mass spectrometry (ICP-SMS), J. Anal. At. Spectrom. 15, 335–340 (2000).

    Article  CAS  Google Scholar 

  11. J. K. Friel, W. L. Andrews, S. E. Jackson, H. P. Longerich, C. Mercer, A. McDonald, et al., Elemental composition of human milk from mothers of premature and full-term infants during the first three months of lactation, Biol. Trace Elem. Res. 67, 225–247 (1999).

    PubMed  CAS  Google Scholar 

  12. M. Krachler, E. Rossipal, and D. Micetic-Turk, Trace element transfer from the mother to the newborn—investigations of triplets of colostrum, maternal and umbilical cord sera, Eur. J. Clin. Nutr. 53, 486–494 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. L. Perrone, L. di Palma, R. di Toro, G. Gialanella, and R. Moro, Interaction of trace elements in a longitudinal study of human milk from full-term and preterm mothers, Biol. Trace Element Res. 41, 321–330 (1994).

    Article  CAS  Google Scholar 

  14. I. Lombeck, K. Kasperek, B. Bonnermann, L. E. Feinendegen, and H. J. Bremer, Selenium content of human milk, cow’s milk, and cow’s milk infant formulas, Eur. J. Pediatr. 129, 139–145 (1978).

    Article  PubMed  CAS  Google Scholar 

  15. M. Krachler, A. Alimonti, F. Petrucci, K. J. Irgolic, F. Forastiere, and S. Caroli, Analytical problems in the determination of platinum-group metals in urine by quadrupole and magnetic sector field inductively coupled plasma mass spectrometry, Anal. Chim. Acta 363, 1–10 (1998).

    Article  CAS  Google Scholar 

  16. M. Krachler, A. Alimonti, F. Petrucci, F. Forastiere, and S. Caroli, Influence of samples pre-treatment on the determination of trace elements in urine by quadrupole and magnetic sector field inductively coupled plasma mass spectrometry, J. Anal. Atomic Spectrom. 13, 701–705 (1998).

    Article  CAS  Google Scholar 

  17. S. Caroli, A. Alimonti, E. Coni, F. Petrucci, O. Senofonte, and N. Violante, The assessment of reference values for elements in human biological tissues and fluids: a systematic review, Crit. Rev. Anal. Chem. 24, 363–398 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krachler, M., Prohaska, T., Koellensperger, G. et al. Concentrations of selected trace elements in human milk and in infant formulas determined by magnetic sector field inductively coupled plasma-mass spectrometry. Biol Trace Elem Res 76, 97–112 (2000). https://doi.org/10.1385/BTER:76:2:97

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:76:2:97

Index Entries

Navigation