Skip to main content
Log in

Chromosome 8 numerical aberrations in stage II invasive ductal carcinoma

Correlation with patient outcome and poor prognosis

  • Original Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Aberrations in chromosome 8 are common in breast cancer. However, the relationship between numerical aberrations of chromosome 8 and clinical behavior (especially prognosis) in breast cancer is not well understood. In this study, a total of 40 specimens of stage II invasive ductal carcinomas (IDCs) was analyzed by fluorescence in situ hybridization (FISH) with a chromosome 8 centromere-specific probe and DNA flow cytometry (stage IIA: 20 cases; stage IIB: 20 cases). All cases were followed for at least 5.7 yr (mean: 7.5 yr; median: 7.7 yr) after surgery or until death. Single (loss), double, and triple or more signals (gain) of chromosome 8 were found in 7.6±3.5% (range: 2–16%; median: 7%), 53.7±13.2% (range: 25–81%, median: 53%), and 38.7±13.2% (range: 17–65%, median: 38%), respectively, of tumors. The frequencies of chromosome 8 gain and disomy correlated with patient outcome (respectively p<0.05 and p<0.01). When median ratios of chromosome 8 loss, disomy, and gain were used as the cutoff values, the survival curves revealed that patients in the low-frequency group survived significantly longer than those in the high-frequency group for chromosome 8 gain (p<0.05), and patients in the high-frequency group survived significantly longer than those in the low-frequency group for chromosome 8 disomy (p<0.05). Poor prognosis was not associated with age, tumor size, lymph node metastasis, histologic type, TNM stage, estrogen-receptor status, progesterone-receptor status, or DNA ploidy. Our results suggest that the frequencies of chromosome 8 gain and disomy is a potentially useful parameter for predicting prognosis of stage II IDCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stanford, J.L., Szklo, M. and Brinton, L.A. (1986). Estrogen receptor and breast cancer. Epidemiol. Rev. 8:42–56.

    PubMed  CAS  Google Scholar 

  2. Slamon, D.J., et al. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182.

    Article  PubMed  CAS  Google Scholar 

  3. Forozan, F., Karhu, R., Kononen, J. and Kallioniemi, O.P. (1997). Genome screening by comparative genomic hybridization. Trends Genet. 13:405–409.

    Article  PubMed  CAS  Google Scholar 

  4. Isola, J.J., et al. (1995). Genetic aberrations detected by comparative genomic hybridization predict outcome in node-negative breast cancer. Am. J. Pathol. 147:905–911.

    PubMed  CAS  Google Scholar 

  5. Kallioniemi, O.P., et al. (1994). Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosom. Cancer 10:231–243.

    Article  PubMed  CAS  Google Scholar 

  6. Ried, T., et al. (1995). Comparative genomic hybridization of formalin-fixed, paraffin-embedded breast carcinomas reveals different patterns of chromosomal gains and losses in fibroadenomas and diploid and aneuploid carcinomas. Cancer Res. 55:5415–5423.

    PubMed  CAS  Google Scholar 

  7. Nishizaki, T., et al. (1997). Genetic alterations in lobular breast cancer by comparative genomic hybridization. Int. J. Cancer 74:513–517.

    Article  PubMed  CAS  Google Scholar 

  8. Tirkkonen, M., et al. (1998). Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosom. Cancer 21:177–184.

    Article  PubMed  CAS  Google Scholar 

  9. Roylance, R., et al. (1999). Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res. 59:1433–1436.

    PubMed  CAS  Google Scholar 

  10. Buerger, H., et al. (1999). Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J. Pathol. 189:521–526.

    Article  PubMed  CAS  Google Scholar 

  11. Escot, C., et al. (1986). Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc. Natl. Acad. Sci. USA 83:4834–4838.

    Article  PubMed  CAS  Google Scholar 

  12. Visscher, D.W., Wallis, T., Awussah, S., Mohamed, A. and Crissman, J.D. (1997). Evaluation of MYC and chromosome 8 copy number in breast carcinoma by interphase cytogenetics. Genes Chromosom. Cancer 18:1–7.

    Article  PubMed  CAS  Google Scholar 

  13. Nesbit, C.E., Tersak, J.M. and Prochownik, E.V. (1999) MYC oncogenes and human neoplastic disease. Oncogene 18:3004–3016.

    Article  PubMed  CAS  Google Scholar 

  14. Devilee, P. and Cornelisse, C.J. (1994). Somatic genetic changes in human breast cancer. Biochem. Biophys. Acta 1198:113–130.

    PubMed  Google Scholar 

  15. Lichter, P., Cremer, T., Borden, J., Manuelidis, L. and Ward, D.C. (1988). Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80:224–234.

    Article  PubMed  CAS  Google Scholar 

  16. Matsumura, K., et al. (1992). Deletion of chromosome 17p loci in breast cancer cells detected by fluorescence in situ hybridization. Cancer Res. 52:3474–3477.

    PubMed  CAS  Google Scholar 

  17. Matsuyama, H., et al. (1994). Deletion mapping of chromosome 8p in prostate cancer by fluoresence in situ hybridization. Oncogene 9:3071–3076.

    PubMed  CAS  Google Scholar 

  18. Afify, A. and Mark, H.F.L. (1997). Fluorescent in situ hybridization assessment of chromosome 8 copy number in stage I and stage II infiltrating ductal carcinoma of the breast. Cancer Genet. Cytogenet. 97:101–105.

    Article  PubMed  CAS  Google Scholar 

  19. Mark, H.F.L., et al. (1997). Stage I and stage II infiltrating ductal carcinoma of the breast analyzed for chromosome 8 copy number using fluorescent in situ hybridization. Pathobiology 65:184–189.

    PubMed  CAS  Google Scholar 

  20. Fleming, I.D., et al. (eds.) (1997). American Joint Committee on Cancer Staging Manual, 5th ed. JB Lippincott, Philadelphia.

    Google Scholar 

  21. Pinkel, D., Straume, T. and Gray, J.W. (1986). Cytogenic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 83:2934–2938.

    Article  PubMed  CAS  Google Scholar 

  22. Kovach, J.S., et al. (1991). Direct sequencing from touch preparations of human carcinomas: analysis of p53 mutations in breast carcinomas. J. Natl. Cancer Inst. 83:1004–1009.

    Article  PubMed  CAS  Google Scholar 

  23. Hopman, A.H.N., et al. (1988). In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry 89:307–316.

    Article  PubMed  CAS  Google Scholar 

  24. Terada, R., et al. (1999). Higher frequencies of numerical aberrations of chromosome 17 in primary gastric cancers are associated with lymph node metastasis. J. Gastroenterol. 34:11–17.

    Article  PubMed  CAS  Google Scholar 

  25. Terada, R., et al. (2002). Clinical significance of nm23 expression and chromosome 17 numerical aberrations in primary gastric cancer. Med. Oncol. 19, 239–248.

    Article  PubMed  CAS  Google Scholar 

  26. Pinto, A.E., Andre, S. and Soares, J. (1999). Short term significance of DNA ploidy and cell proliferation in breast carcinoma: a multivariate analysis of prognostic markers in a series of 308 patients. J. Clin. Pathol. 52:604–611.

    Article  PubMed  CAS  Google Scholar 

  27. Arnoldus, E.P.J., et al. (1991). Feasibility of in situ hybridization with chromosome specific DNA probes on paraffin wax-embedded tissue. J. Clin. Pathol. 44:900–904.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryusuke Terada MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tagawa, Y., Yasutake, T., Ikuta, Y. et al. Chromosome 8 numerical aberrations in stage II invasive ductal carcinoma. Med Oncol 20, 127–135 (2003). https://doi.org/10.1385/MO:20:2:127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MO:20:2:127

Key Words

Navigation