Skip to main content
Log in

Natural patterns of neural activity

How physiological mechanisms are orchestrated to cope with real life

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Physiological mechanisms of neuronal information processing have been shaped during evolution by a continual interplay between organisms and their sensory surroundings. Thus, when asking for the functional significance of such mechanisms, the natural conditions under which they operate must be considered. This has been done successfully in several studies that employ sensory stimulation under in vivo conditions. These studies address the question of how physiological mechanisms within neurons are properly adjusted to the characteristics of natural stimuli and to the demands imposed on the system being studied. Results from diverse animal models show how neurons exploit natural stimulus statistics efficiently by utilizing specific filtering capacities. Mechanisms that allow neurons to adapt to the currently relevant range from an often immense stimulus spectrum are outlined, and examples are provided that suggest that information transfer between neurons is shaped by the system-specific computational tasks in the behavioral context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dodge F. A., Jr. and Rahamimoff R. (1967) Cooperative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. 193, 419–432.

    PubMed  CAS  Google Scholar 

  2. Fatt P. and Katz B. (1951) An analysis of the end-plate potential recorded with an intra-cellular electrode. J. Physiol. 115, 320–370.

    PubMed  CAS  Google Scholar 

  3. Thaler C., Li W., and Brehm P. (2001) Calcium channel isoforms underlying synaptic transmission at embryonic Xenopus neuromuscular junctions. J. Neurosci. 21, 412–422.

    PubMed  CAS  Google Scholar 

  4. Yau K. W. and Nakatani K. (1985) Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature 313, 579–582.

    Article  PubMed  CAS  Google Scholar 

  5. Nakatani K. and Yau K. W. (1988) Calcium and light adaptation in retinal rods and cones. Nature 334, 69–71.

    Article  PubMed  CAS  Google Scholar 

  6. Matthews H. R. and Fain G. L. (2001) A light-dependent increase in free Ca2+ concentration in the salamander rod outer segment. J. Physiol. 532, 305–321.

    Article  PubMed  CAS  Google Scholar 

  7. Jentsch T. J. (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1, 21–30.

    Article  PubMed  CAS  Google Scholar 

  8. Sah P. (1996) Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19, 150–154.

    Article  PubMed  CAS  Google Scholar 

  9. Wu L. G., Westenbroek R. E., Borst J. G., Catterall W. A., and Sakmann B. (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J. Neurosci. 19, 726–736.

    PubMed  CAS  Google Scholar 

  10. Turner R. W., Maler L., and Burrows M. (1999) Electroreception and electrocommunication. J. Exp. Biol. 202, 1167–1458.

    Google Scholar 

  11. Heiligenberg W. (1976) Electrolocation and jamming avoidance in the mormyrid fish Brienomyrus. J. Comp. Physiol. [A] 109, 357–372.

    Article  Google Scholar 

  12. Westby G. W. M. (1974) Assessment of the signal value of certain discharge patterns in the electric fish, Gymnotus carapo, by means of playback. J. Comp. Physiol. [A] 92, 327–341.

    Article  Google Scholar 

  13. Knudsen E. (1974) Behavioral thresholds to electric signals in high frequency electric fish. J. Comp. Physiol. [A] 91, 333–353.

    Article  Google Scholar 

  14. Rose G. J. and Fortune E. S. (1996) New techniques for making whole-cell recordings from CNS neurons in vivo. Neurosci. Res. 26, 89–94.

    PubMed  CAS  Google Scholar 

  15. Fortune E. S. and Rose G. J. (1997) Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo. J. Neurosci. 17, 3815–3825.

    PubMed  CAS  Google Scholar 

  16. Haag J. and Borst A. (1996) Amplification of high-frequency synaptic inputs by active dendritic membrane processes. Nature 379, 639–641.

    Article  CAS  Google Scholar 

  17. Hausen K. (1984) The lobula-complex of the fly: structure, function and significance in visual behaviour, in Photoreception and vision in invertebrates (Ali M. A., ed.), Plenum Press, New York, London, pp. 523–559.

    Google Scholar 

  18. Egelhaaf M. and Borst A. (1993) A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons. J. Neurosci. 13, 4563–4574.

    PubMed  CAS  Google Scholar 

  19. Egelhaaf M., Kern R., Krapp H. G., Kretzberg J., Kurtz R., and Warzecha A.-K. (2002) Neural encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci. 25, 96–102.

    Article  PubMed  CAS  Google Scholar 

  20. Hausen K. (1982) Motion sensitive interneurons in the optomotor system of the fly: II. The horizontal cells: receptive field organization and response characteristics. Biol. Cybern. 46, 67–79.

    Article  Google Scholar 

  21. Hausen K. (1982) Motion sensitive interneurons in the optomotor system of the fly: I. The horizontal cells: structure and signals. Biol. Cybern. 45, 143–156.

    Article  Google Scholar 

  22. Krapp H. G. and Hengstenberg R. (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466.

    Article  PubMed  CAS  Google Scholar 

  23. Egelhaaf M. (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly: III. Possible input circuitries and behavioural significance of the FD-cells. Biol. Cybern. 52, 267–280.

    Article  Google Scholar 

  24. Egelhaaf M. (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly: II. Figure-detection cells, a new class of visual interneurons. Biol. Cybern. 52, 195–209.

    Google Scholar 

  25. Kimmerle B. and Egelhaaf M. (2000) Performance of fly visual interneurons during object fixation. J. Neurosci. 20, 6256–6266.

    PubMed  CAS  Google Scholar 

  26. Haag J., Theunissen F., and Borst A. (1997) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties. J. Comput. Neurosci. 4, 349–369.

    Article  PubMed  CAS  Google Scholar 

  27. Haag J. and Borst A. (1998) Active membrane properties and signal encoding in graded potential neurons. J. Neurosci. 18, 7972–7986.

    PubMed  CAS  Google Scholar 

  28. Durr V., Kurtz R., and Egelhaaf M. (2001) Two classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics. J. Neurobiol. 46, 289–300.

    Article  PubMed  CAS  Google Scholar 

  29. Gauck V., Egelhaaf M., and Borst A. (1997) Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system. J. Comp. Neurol. 381, 489–499.

    Article  PubMed  CAS  Google Scholar 

  30. van Hateren J. H. (1997) Processing of natural time series of intensities by the visual system of the blowfly. Vision Res. 37, 3407–3416.

    Article  PubMed  Google Scholar 

  31. Weckstrom M. and Laughlin S. B. (1995) Visual ecology and voltage-gated ion channels in insect photoreceptors. Trends Neurosci. 18, 17–21.

    Article  PubMed  CAS  Google Scholar 

  32. Laughlin S. B. and Weckstrom M. (1993) Fast and slow photoreceptors—a comparative study of the functional diversity of coding and conductance in the Diptera. J. Comp. Physiol. [A] 172, 593–609.

    Article  Google Scholar 

  33. Mendenhall B. and Murphey R. K. (1974) The morphology of cricket giant interneurons. J. Neurobiol. 5, 565–580.

    Article  PubMed  CAS  Google Scholar 

  34. Baba Y., Hirota K., Shimozawa T., and Yamaguchi T. (1995) Differing afferent connections of spiking and nonspiking wind-sensitive local interneurons in the terminal abdominal ganglion of the cricket Gryllus bimaculatus. J. Comp. Physiol. [A] 176, 17–30.

    Google Scholar 

  35. Jacobs G. A. and Miller J. P. (1985) Functional properties of individual neuronal branches isolated in situ by laser photoinactivation. Science 228, 344–346.

    Article  PubMed  CAS  Google Scholar 

  36. Jacobs G. A., Miller J. P., and Murphey R. K. (1986) Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron. J. Neurosci. 6, 2298–2311.

    PubMed  CAS  Google Scholar 

  37. Ogawa H., Baba Y., and Oka K. (1996) Dendritic Ca2+ response in cercal sensory interneurons of the cricket Gryllus bimaculatus. Neurosci. Lett. 219, 21–24.

    Article  PubMed  CAS  Google Scholar 

  38. Ogawa H., Baba Y., and Oka K. (1999) Dendritic Ca2+ transient increase evoked by wind stimulus in the cricket giant interneuron. Neurosci. Lett. 275, 61–64.

    Article  PubMed  CAS  Google Scholar 

  39. Ogawa H., Baba Y., and Oka K. (2000) Spike-dependent calcium influx in dendrites of the cricket giant interneuron. J. Neurobiol. 44, 45–56.

    Article  PubMed  CAS  Google Scholar 

  40. Ogawa H., Baba Y., and Oka K. (2001) Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket. J. Neurobiol. 46, 301–313.

    Article  PubMed  CAS  Google Scholar 

  41. Howard J., Blakeslee B., and Laughlin S. B. (1987) The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc. R. Soc. Lond B Biol. Sci. 231, 415–435.

    PubMed  CAS  Google Scholar 

  42. Laughlin S. B., Howard J., and Blakeslee B. (1987) Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proc. R. Soc. Lond B Biol. Sci. 231, 437–467.

    PubMed  CAS  Google Scholar 

  43. Laughlin S. B. (1981) A simple coding procedure enhances a neuron’s information capacity. Z. Naturforsch. 36c, 910–912.

    Google Scholar 

  44. French A. S., Korenberg M. J., Jarvilehto M., Kouvalainen E., Juusola M., and Weckstrom M. (1993) The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities. Biophys. J. 65, 832–839.

    Article  PubMed  CAS  Google Scholar 

  45. Juusola M. and Weckstrom M. (1993) Band-pass filtering by voltage-dependent membrane in an insect photoreceptor. Neurosci. Lett. 154, 84–88.

    Article  PubMed  CAS  Google Scholar 

  46. Juusola M., Kouvalainen E., Jarvilehto M., and Weckstrom M. (1994) Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors. J. Gen. Physiol. 104, 593–621.

    Article  PubMed  CAS  Google Scholar 

  47. Juusola M. and Hardie R. C. (2001) Light adaptation in Drosophila photoreceptors: I. Response dynamics and signaling efficiency at 25 degrees C. J. Gen. Physiol. 117, 3–25.

    Article  PubMed  CAS  Google Scholar 

  48. Juusola M. and Hardie R. C. (2001) Light adaptation in Drosophila photoreceptors: II. Rising temperature increases the bandwidth of reliable signaling. J. Gen. Physiol. 117, 27–42.

    Article  PubMed  CAS  Google Scholar 

  49. Weckstrom M., Hardie R. C., and Laughlin S. B. (1991) Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation. J. Physiol. 440, 635–657.

    PubMed  CAS  Google Scholar 

  50. Sobel E. C. and Tank D. W. (1994) In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263, 823–825.

    Article  CAS  PubMed  Google Scholar 

  51. Maddess T. and Laughlin S. B. (1985) Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc. R. Soc. Lond B Biol. Sci. 228, 251–275.

    Google Scholar 

  52. Jian S. and Horridge G. A. (1991) The H1 neuron measures change in velocity irrespective of contrast frequency, mean velocity or velocity modulation frequency. Philos. Trans. R. Soc. Lond B Biol. Sci. 331, 205–211.

    Article  Google Scholar 

  53. Fairhall A. L., Lewen G. D., Bialek W., and de Ruyter van Steveninck R. R. (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412, 787–792.

    Article  PubMed  CAS  Google Scholar 

  54. Harris R. A., O’Carroll D. C., and Laughlin S. B. (2000) Contrast gain reduction in fly motion adaptation. Neuron 28, 595–606.

    Article  PubMed  CAS  Google Scholar 

  55. Kurtz R., Durr V., and Egelhaaf M. (2000) Dendritic calcium accumulation associated with direction-selective adaptation in visual motion-sensitive neurons in vivo. J. Neurophysiol. 84, 1914–1923.

    PubMed  CAS  Google Scholar 

  56. Harris R. A., O’Carroll D. C., and Laughlin S. B. (1999) Adaptation and the temporal delay filter of fly motion detectors. Vision Res. 39, 2603–2613.

    Article  PubMed  CAS  Google Scholar 

  57. Clifford C. W. and Langley K. (1996) A model of temporal adaptation in fly motion vision. Vision Res. 36, 2595–2608.

    Article  PubMed  CAS  Google Scholar 

  58. de Ruyter van Steveninck R. R., Zaagman W. H., and Mastebroeck H.A.K. (1986) Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliophora erythrocephala. Biol. Cybern. 54, 223–236.

    Article  Google Scholar 

  59. Durr V. and Egelhaaf M. (1999) In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. J. Neurophysiol. 82, 3327–3338.

    PubMed  CAS  Google Scholar 

  60. Borst A. and Egelhaaf M. (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. Proc. Natl. Acad. Sci. USA 89, 4139–4143.

    Article  PubMed  CAS  Google Scholar 

  61. Brenner N., Bialek W., and de Ruyter van Steveninck R. R. (2000) Adaptive rescaling maximizes information transmission. Neuron 26, 695–702.

    Article  PubMed  CAS  Google Scholar 

  62. Fortune E. S. and Rose G. J. (2000) Short-term synaptic plasticity contributes to the temporal filtering of electrosensory information. J. Neurosci. 20, 7122–7130.

    PubMed  CAS  Google Scholar 

  63. Fortune E. S. and Rose G. J. (2001) Short-term synaptic plasticity as a temporal filter. Trends Neurosci. 24, 381–385.

    Article  PubMed  CAS  Google Scholar 

  64. Juusola M., Uusitalo R. O., and Weckstrom M. (1995) Transfer of graded potentials at the photoreceptor-interneuron synapse. J. Gen. Physiol. 105, 117–148.

    Article  PubMed  CAS  Google Scholar 

  65. Juusola M., French A. S., Uusitalo R. O., and Weckstrom M. (1996) Information processing by graded-potential transmission through tonically active synapses. Trends Neurosci. 19, 292–297.

    Article  PubMed  CAS  Google Scholar 

  66. von Gersdorff H. (2001) Synaptic ribbons: versatile signal transducers. Neuron 29, 7–10.

    Article  Google Scholar 

  67. Morgans C. W. (2000) Neurotransmitter release at ribbon synapses in the retina. Immunol. Cell Biol. 78, 442–446.

    Article  PubMed  CAS  Google Scholar 

  68. Attwell D., Borges S., Wu S. M., and Wilson M. (1987) Signal clipping by the rod output synapse. Nature 328, 522–524.

    Article  PubMed  CAS  Google Scholar 

  69. Kurtz R., Warzecha A. K., and Egelhaaf M. (2001) Transfer of visual motion information via graded synapses operates linearly in the natural activity range. J. Neurosci. 21, 6957–6966.

    PubMed  CAS  Google Scholar 

  70. Hengstenberg R. (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. [A] 149, 179–193.

    Article  Google Scholar 

  71. Hengstenberg R., Hausen K., and Hengstenberg B. (1982) The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala. J. Comp. Physiol. [A] 149, 163–177.

    Article  Google Scholar 

  72. Krapp H. G., Hengstenberg B., and Hengstenberg R. (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J. Neurophysiol. 79, 1902–1917.

    PubMed  CAS  Google Scholar 

  73. Warzecha A. K., Kurtz R., and Egelhaaf M. (2003) Synaptic transfer of dynamical motion information between identified neurons in the visual system of the blowfly, Neurosci. (in press).

  74. Warzecha A. K., Kretzberg J., and Egelhaaf M. (1998) Temporal precision of the encoding of motion information by visual interneurons. Curr. Biol. 8, 359–368.

    Article  PubMed  CAS  Google Scholar 

  75. Hausen K. and Egelhaaf M. (1989) Neural mechanisms of visual course control in insects, in Facets of Vision (Stavenga D. G. and Hardie R. C., eds.), Springer, Berlin, Heidelberg, pp. 391–424.

    Google Scholar 

  76. Augustine G. J. (2001) How does calcium triggner neurotransmitter release? Curr. Opin. Neurobiol. 11, 320–326.

    Article  PubMed  CAS  Google Scholar 

  77. Bollmann J. H., Sakmann B., and Borst J. G. (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957.

    Article  PubMed  CAS  Google Scholar 

  78. Heidelberger R., Heinemann C., Neher E., and Matthews G. (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515.

    Article  PubMed  CAS  Google Scholar 

  79. Qian J. and Noebels J. L. (2001) Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. J. Neurosci. 21, 3721–3728.

    PubMed  CAS  Google Scholar 

  80. Schneggenburger R. and Neher E. (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893.

    Article  PubMed  CAS  Google Scholar 

  81. Smith S. J., Augustine G. J., and Charlton M. P. (1985) Transmission at voltage-clamped giant synapse of the squid: evidence for cooperativity of presynaptic calcium action. Proc. Natl. Acad. Sci. USA 82, 622–625.

    Article  PubMed  CAS  Google Scholar 

  82. Wu L. G. and Saggau P. (1994) Presynaptic calcium is increased during normal synaptic transmission and paired-pulse facilitation, but not in long-term potentiation in area CA1 of hippocampus. J. Neurosci. 14, 645–654.

    PubMed  CAS  Google Scholar 

  83. Ivanov A. I. and Calabrese R. L. (2000) Intracellular Ca2+ dynamics during spontaneous and evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic transmission. J. Neurosci. 20, 4930–4943.

    PubMed  CAS  Google Scholar 

  84. Haag J. and Borst A. (2000) Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons. J. Neurophysiol. 83, 1039–1051.

    PubMed  CAS  Google Scholar 

  85. Witkovsky P., Schmitz Y., Akopian A., Krizaj D., and Tranchina D. (1997) Gain of rod to horizontal cell synaptic transfer: relation to glutamate release and a dihydropyridine-sensitive calcium current. J. Neurosci. 17, 7297–7306.

    PubMed  CAS  Google Scholar 

  86. Gleason E., Borges S., and Wilson M. (1994) Control of transmitter release from retinal amacrine cells by Ca2+ influx and efflux. Neuron 13, 1109–1117.

    Article  PubMed  CAS  Google Scholar 

  87. Beutner D., Voets T., Neher E., and Moser T. (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29, 681–690.

    Article  PubMed  CAS  Google Scholar 

  88. von Gersdorff H. (2001) Synaptic ribbons: versatile signal transducers. Neuron 29, 7–10.

    Article  Google Scholar 

  89. Stewart B. A., Mohtashami M., Trimble W. S., and Boulianne G. L. (2000) SNARE proteins contribute to calcium cooperativity of synaptic transmission. Proc. Natl. Acad. Sci. USA 97, 13,955–13,960.

    CAS  Google Scholar 

  90. Brandstatter J. H., Wassle H., Betz H., and Morgans C. W. (1996) The plasma membrane protein SNAP-25, but not syntaxin, is present at photoreceptor and bipolar cell synapses in the rat retina. Eur. J. Neurosci. 8, 823–828.

    Article  PubMed  CAS  Google Scholar 

  91. Morgans C. W., Gaughwin P., and Maleszka R. (2001) Expression of the alpha1F calcium channel subunit by photoreceptors in the rat retina. Mol. Vis. 7, 202–209.

    PubMed  CAS  Google Scholar 

  92. Passaglia C., Dodge F., Herzog E., Jackson S., and Barlow R. (1997) Deciphering a neural code for vision. Proc. Natl. Acad. Sci. USA 94, 12,649–12,654.

    Article  CAS  Google Scholar 

  93. Ilg U. J. and Thier P. (1996) Inability of rhesus monkey area V1 to discriminate between self-induced and externally induced retinal image slip. Eur. J. Neurosci. 8, 1156–1166.

    Article  PubMed  CAS  Google Scholar 

  94. Kern R., Lutterklas M., and Egelhaaf M. (2000) Neuronal representation of optic flow experienced by unilaterally blinded flies on their mean walking trajectories. J. Comp. Physiol. [A] 186, 467–479.

    Article  CAS  Google Scholar 

  95. Kern R., Lutterklas M., Petereit C., Lindemann J. P., and Egelhaaf M. (2001) Neuronal processing of behaviourally generated optic flow: experiments and model simulations. Network: Comput. Neural Syst. 12, 351–369.

    Article  CAS  Google Scholar 

  96. Kern R., Petereit C., and Egelhaaf M. (2001) Neural processing of naturalistic optic flow. J. Neurosci. 21, RC139.

    Google Scholar 

  97. Kimmerle B. and Egelhaaf M. (2000) Detection of object motion by a fly neuron during simulated flight. J. Comp. Physiol. [A] 186, 21–31.

    Article  CAS  Google Scholar 

  98. Hateren J. H. and Schilstra C. (1999) Blowfly flight and optic flow. II. Head movements during flight. J. Exp. Biol. 202 (Pt 11), 1491–1500.

    PubMed  Google Scholar 

  99. Schilstra C. and van Hateren J. H. (1998) Using miniature sensor coils for simultaneous measurement of orientation and position of small, fast-moving animals. J. Neurosci. Methods 83, 125–131.

    Article  PubMed  CAS  Google Scholar 

  100. Schilstra C. and van Hateren J. H. (1998) Stabilizing gaze in flying blowflies. Nature 395, 654.

    Article  PubMed  CAS  Google Scholar 

  101. Schilstra C. and Hateren J. H. (1999) Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J. Exp. Biol. 202 (Pt 11), 1481–1490.

    PubMed  Google Scholar 

  102. Lindemann J. P., Kern R., Michaelis C., Meyer P., van Hateren J. H., and Egelhaaf M. (2003). FliMax, a novel stimulus device for panaromic and highspeed presentation of behaviorally generated optic flow. Vis. Res. 43, 779–791.

    Article  PubMed  CAS  Google Scholar 

  103. O’Keefe J. (1976) Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109.

    Article  PubMed  CAS  Google Scholar 

  104. Helmchen F., Fee M. S., Tank D. W., and Denk W. (2001) A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron 31, 903–912.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Kurtz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurtz, R., Egelhaaf, M. Natural patterns of neural activity. Mol Neurobiol 27, 13–31 (2003). https://doi.org/10.1385/MN:27:1:13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:27:1:13

Index Entries

Navigation