Skip to main content
Log in

Principles of affinity-based biosensors

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applications (such as the enzyme biosensors for blood glucose analysis). Nevertheless, the fastest growing area in the biosensors research literature continues to involve advances in affinity-based biosensors and biosensor-related methods. Numerous biosensor techniques have been reported that allow researchers to better study the kinetics, structure, and (solid/liquid) interface phenomena associated with protein-ligand binding interactions. In addition, potential application areas for which affinity-based biosensor techniques show promise include clinical/diagnostics, food processing, military/antiterrorism, and environmental monitoring. The design and structural features of these devices—composed of a biological affinity element interfaced to a signal transducer—primarily determine their operational characteristics. This paper although not intended as a comprehensive review, will outline the principles of affinity biosensors with respect to potential application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner, A. P. F. (1989) Current trends in biosensor research and development. Sensors Actuators 17, 433–450.

    Article  CAS  Google Scholar 

  2. Marco, M. P. and Barcelo, D. (1996) Environmental Applications of Analytical Biosensors. Measurement Sci. Technol. 7, 1547–1572.

    Article  CAS  Google Scholar 

  3. Lopez-Avila, V. and Hill, H. H. (1997) Field Analytical Chemistry. Anal. Chem. 69, 289R-305R.

    Article  CAS  Google Scholar 

  4. Ghindilis, A.L., Atanasov, P., Wilkins, M., and Wilkins, E. (1998) Immunosensor: Electrochemical sensing and other engineering approaches. Biosens. Bioelectron. 13, 113–131.

    Article  PubMed  CAS  Google Scholar 

  5. Sadik, O. A. and Van Emon, J. M. (1997) Designing Immunosensors for Environmental Monitoring. Chemtech June, 38–46.

  6. Darbon, P., Michel, V., Math, F., Giorgi, H., and Machizaud, F. (1998) Immunoelectrodes in protein detection: comparison between glassy carbon and a semi-metallic Ni/P thin film as bonding support. Biological applications. Anal. Chem. 70, 5072–5078.

    Article  PubMed  CAS  Google Scholar 

  7. Eldefrawi, M. E., Eldefrawi, A. T., Rogers, K. R., Valdes, J. J. (1992) Pharmacological biosensors, in Immunochemical Assays and Biosensor Technology for the 1990s (Nakamura, R. M., Kasahara, Y., and Rechnitz, G. A., eds.), ASM, Washington, D.C., pp. 391–406.

    Google Scholar 

  8. Rogers, K. R. (1998) Biosensor technology for environmental measurement, in Encyclopedia of Environmental Analysis and Remediation (R. A. Meyers, ed.), John Wiley & Sons, NY, pp. 755–768.

    Google Scholar 

  9. Evtugyn, G. A., Budnikov, H. C., and Kolskaya, N. (1998) Sensitivity and selectivity of Electrochemical Enzyme Sensors for Inhibitor Determination. Talanta 46, 465–484.

    Article  CAS  PubMed  Google Scholar 

  10. Yalow, R. S. and Berson, S. A. (1959) Assay of plasma insulin in human subjects by immunological methods. Nature 184, 1648,1649.

    Article  PubMed  CAS  Google Scholar 

  11. Ekins, R. P. (1960) The estimation of thyroxin in human plasma by an electrophoretic technique. Clin. Chim. Acta 5, 453–459.

    Article  PubMed  CAS  Google Scholar 

  12. Hage, D. S. (1999) Immunoassays. Anal. Chem. 71, 294R-304R.

    Article  PubMed  CAS  Google Scholar 

  13. Hennion, M.-C. and Barcelo, D. (1998) Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples: a review. Anal. Chim. Acta 362, 3–34.

    Article  CAS  Google Scholar 

  14. Kronick, M. N. and Little, W. A. (1974) A new immunoassay based on fluorescent excitation by internal reflection spectroscopy. Proc. Natl. Acad. Sci. USA 71, 4553–4555.

    Google Scholar 

  15. Giaever, I. (1973) The antibody: antigen interaction: a visual observation. J. Immunol. 110, 1424–1426.

    PubMed  CAS  Google Scholar 

  16. Tromberg, B. J., Sepaniak, M. J., Alarie, J. P., Vo-Dinh, T., and Santella, R. M. (1988) Development of antibody-based fibre optic sensors for detection of benzo(a)pyrene Metabolite. Anal. Chem. 60, 1901–1907.

    Article  PubMed  CAS  Google Scholar 

  17. Obrien, R. A. (1986) Receptor Binding in Drug Research, Marcel Dekker, New York, NY.

    Google Scholar 

  18. Eldefrawi, A. T., Jett, D. A., and Fernando, J. C. (1992) in Biomarkers of Human Exposure to Pesticides, ACS Symposium Series 542 (Saleh, M. A., Blancato, J. N., and Nauman, C. H., eds.), ACS, Washington D.C., pp. 51–64.

    Google Scholar 

  19. Marshall, A. and Hodgson, J. (1998) DNA chips: an array of possibilities. Nature Biotechnology 16, 27–31.

    Article  PubMed  CAS  Google Scholar 

  20. Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M., and Dontha, N. (1996) DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus. Anal. Chem. 68, 2629–2634.

    Article  PubMed  CAS  Google Scholar 

  21. Watts, H. J., Yeung, D., and Parks, H. (1995) Realtime detection and quantification of DNA hybridization by an optical biosensor. Anal. Chem. 67, 4283–4289.

    Article  PubMed  CAS  Google Scholar 

  22. Siontorou, C. G., Nikolelis, D. P., Mierrnik, A., and Krull, U. J. (1998) Rapid methods for detection of aflatoxin M-1 based on electrochemical transduction by self-assembled metal-supported bilayer lipid membranes (s-BLMs) and on interfaces with transduction of DNA hybridization. Electrochim. Acta 43, 3611–3617.

    Article  CAS  Google Scholar 

  23. Pandey, P. C. and Weetall, H. H. (1995) Detection of aromatic compounds based on DNA intercalation using an evanescent wave biosensor. Anal. Chem. 67, 787–792.

    Article  CAS  Google Scholar 

  24. Fojta, M. and Palecek, E. (1997) Supercoiled DNA-modified mercury electrode: A highly sensitive tool for the detection of DNA damage. Anal. Chim. Acta 342, 1–12.

    Article  CAS  Google Scholar 

  25. Cheng, J., Sheldon, E. L., Wu, L., Uribe, A., Gerrue, L. O., Carrino, J., Heller, M., and O’Connell, J. P. (1998) Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips. Nature Biotechnol. 16, 541–546.

    Article  CAS  Google Scholar 

  26. Edwards, R. (1996) Immunoassays Essential Data. John Wiley & Sons, New York, NY.

    Google Scholar 

  27. Taylor, R. F. (1996) Chemical and biological sensors: markets and commercialization, in Handbook of Chemical and Biological Sensors (Taylor, R. F. and Schultz, J. S., eds.), IOP Publishing, Philadelphia, PA, pp. 553–559.

    Google Scholar 

  28. Vo-Dinh, T. Tromberg, B. J., Griffin, G. D., Ambrose, K. R., Sepaniak, M. J., and Gardenhire, E. M. (1987) Antibody-based fiber optic biosensor for carcinogen benzo(a)pyrine. Appl. Spectrosc. 41, 735–738.

    Article  CAS  Google Scholar 

  29. Welan, J. P., Kusterbeck, A. W., Wemhoff, G. A., Bredehorst, R., and Ligler, F. S. (1993) Continuous flow immunosensor for detection of explosives. Anal. Chem. 65, 3561–3565.

    Article  Google Scholar 

  30. Onnerfjord, P., Eremin, S. A., Emneus, J., and Marko-Varga, G. (1998) High sample throughput flow immunoassay utilizing restricted access columns for the separation of bound and free label. J. Chromat. A 800, 219–230.

    Google Scholar 

  31. Locscio-Brown, L., Martynova, L., Christensen, R. G., and Hovai G. (1996) Flow immunoassay using solid phase entrapment. Anal. Chem. 68, 1665–16670.

    Article  Google Scholar 

  32. Rogers, K. R., Kohl, S. D., Riddick, L. A., and Glass, T. R. (1997) Detection of 2,4-dichlorophenoxyacetic acid using a fluorescence immunoanalizer. Analyst 122, 1107–1111.

    Article  PubMed  CAS  Google Scholar 

  33. Dzgoev, A., Mecklenburg, M., Larsson, P.- O., and Daniesson, B. (1996) Microformat immaging ELISA for pesticide determination. Anal. Chem. 68, 3364–3369.

    Article  CAS  Google Scholar 

  34. Wadkins, R. and Ligler, F. S. (1995) Immunobio-sensors based on evanescent wave excitation, in Affinity Biosensors: Techniques and Protocols (Rogers, K. R. and Mulchandani, A., eds.), Humana Press, Totowa, pp. 77–88.

    Google Scholar 

  35. Rogers, K. R., Valdes, J. J., and Eldefrawi, M. E. (1989) Acetylcholine receptor fiber-optic evanescent fluorosensor. Anal. Biochem. 182, 353–359.

    Article  PubMed  CAS  Google Scholar 

  36. Keay, R. W. and McNeil, C. J. (1998) Separation-free electrochemical immunosensor for rapid determination of atrazine. Biosens. Bioelectron. 13, 963–970.

    Article  PubMed  CAS  Google Scholar 

  37. Koncki, R., Owczarek, A., Dzwolak, W., and Glab, S. (1998) Immunoenzymatic sensitization of membrane ion-selective electrodes. Sens. Actuator B-Chem. 47, 246–250.

    Article  Google Scholar 

  38. Anis, N. A., Eldefrawi, M. E., and Wong, R. B. (1993) Reusable fiber optic immunosensor for rapid detection of Imazethapyr herbicide. J. Agric. Chem. 41, 843–848.

    Article  CAS  Google Scholar 

  39. Medyantseva, E. P., Vertlib, M. G., Kutyreva, M. P., Khaldeeva, E. I., Budnikov, G. K., and Eremin, S. A. (1997) The specific immunochemical detection of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid pesticides by amperometric cholinesterase biosensors. Anal. Chim. Acta 347, 71–78.

    Article  CAS  Google Scholar 

  40. Lee, M., Durst, R. A., and Wong, R. B. (1998) Development of flow-injection liposome immunoanalysis (FILIA) for Imazethapyr. Talanta 46, 851–859.

    Article  CAS  PubMed  Google Scholar 

  41. Lee, M., Durst, R. A., and Wong, R. B. (1998) Comparison of liposome amplification and fluorophor detection in flow-injection immunoanalyses. Anal. Chim. Acta 354, 23–28.

    Article  Google Scholar 

  42. Baumner, A. J. and Schmidt, R. D. (1998) Development of a new immunosensor for pesticide detection a disposable system with liposome enhancement and amperometric detection. Biosens. Bioelectron. 13, 519–529.

    Article  PubMed  CAS  Google Scholar 

  43. Taylor, R.F. (1996) Immobilization Methods, in Handbook of Chemical and Biological Sensors (Taylor, R. F. and Schultz, J. S., eds.), IOP Publishing, Philadelphia, PA, pp. 203–219.

    Google Scholar 

  44. Nakanishi, K., Muguruma, H., and Karube, I. (1996) A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for immunosensors. Anal. Chem. 68, 1695–1700.

    Article  PubMed  CAS  Google Scholar 

  45. Bhatia, S. K., Shriver-Lake, L. C., Prior, K. J., Georger, J. H., Calvert, J. M., Bredhorst, R., and Ligler, F. S. (1989) User of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Anal. Biochem. 178, 408–413.

    Article  PubMed  CAS  Google Scholar 

  46. Mirsky, V. M., Mass, M., Krause, C., and Wolfbeis, O. S. (1998) Capacitive approach to determine phosphatase A(2) activity toward artificial and natural substrates. Anal. Chem. 70, 3674–3678.

    Article  CAS  Google Scholar 

  47. Segeyeva, T. A., Lavrik, N. V., Rachkov, A. E., Kazantseva, Z. I., and El Skaya, A. V. (1998) An approach to conductimetric immunosensor based on phthalocyanine thin film. Biosens. Bioelectron. 13, 359–369.

    Article  Google Scholar 

  48. Parellada, J. Narvaez, A, Lopez, M. A., Dominguez, E., Fernandez, J. J., Paulor, V. and Katakis, I. (1998) Amperometric immunosensors and enzyme electrodes for environmental applications. Anal. Chim. Acta 362, 47–57.

    Article  CAS  Google Scholar 

  49. Skladal, P. (1997) Advances in Electrochemical immunosensors. Electroanalysis 9, 737–744.

    Article  CAS  Google Scholar 

  50. Wang, J., Pamidi, P. V. A., and Rogers K. R. (1998) Sol-gel derived thick film amperometric immunosensors. Anal. Chem. 70, 1171–1175.

    Article  PubMed  CAS  Google Scholar 

  51. Luong, J. H. T., Sochaczewski, E. P., and Guilbault, G. G. (1990) Development of a piezoimmunosensor for the detection of Salmonella typhimurium. Ann. NY Acad. Sci. 613, 439–443.

    Article  PubMed  CAS  Google Scholar 

  52. Pei, R.-J. Hu, J.-M., Hu Y., and Zeng, Y. (1998) A piezoelectric immunosensor for complement C4 using protein A oriented immobilization of antibody. J. Chem. Technol. Biotechnol. 73, 59–63.

    Article  CAS  Google Scholar 

  53. Kroger, S., Setford, S. J., and Turner A. P. F. (1998) Immunosensor for 2,4-dichlorophenoxyacetic acid in aqueous/organic solvent soil extracts. Anal. Chem. 70, 5047–5053.

    Article  PubMed  CAS  Google Scholar 

  54. Changeux, J. P., Devillers-Thiery, A., and Chemouille, P. (1984) Acetylcholine receptor: an alosteric protein. Science 225, 1335–1345.

    Article  PubMed  CAS  Google Scholar 

  55. Eray, M., Dogan, N. S., Reiken, S. R., Sutisna, H., Vanwei, B. J., Koch, A. R., Moffett, D. F., Silber, M., and Davis, W. C. (1995) A highly stable and selective biosensor using modified nicotinic acetylcholine receptor (nAChR). Biosystems 35, 183–188.

    Article  PubMed  CAS  Google Scholar 

  56. Rogers, K. R., Valdes, J. J., Menking, D., Thompson, R., and Eldefrawi M. E. (1991) Pharmacologic specificity of an acetylcholine receptor fiber-optic biosensor. Biosens. Bioelectron. 6, 507–516.

    Article  PubMed  CAS  Google Scholar 

  57. Schmidt, E. K., Liebermann, T., Kreiter, M., Jonczyk, A., Naumann, R., Offenhausser, A., Neumann, E., Kukol, A. M., Maelicke, A., and Knoll, W. (1998) Incorporation of the acetylcholine receptor dimer from Torpedo californica in a peptide supported lipid membrane investigated by surface plasmon and fluorescence spectroscopy. Biosens. Bioelectron. 13, 585–591.

    Article  PubMed  CAS  Google Scholar 

  58. Belli, S. L. and Rechnitz, G. D. (1986) Prototype potentiometric biosensor using intact chemoreceptor structures. Analyt. Lett. 19, 403–416.

    CAS  Google Scholar 

  59. Rechnitz, G. A., Coon, D., Babb, C., Ogunseitan, A., and Lee, A. (1997) Sensing neuroactive agents in Hawaiian plants. Anal. Chim. Acta 337, 297–303.

    Article  CAS  Google Scholar 

  60. Lundstrom, I. and Svensson, S. (1998) Biosensing with G-Protein coupled receptor systems. Biosens. Bioelectron. 13, 689–695.

    Article  PubMed  CAS  Google Scholar 

  61. Coon, D. R., Ogunseitan, A. B., and Rechnitz, G. A. (1997) Neuronal biosensors using liposomal delivery of local anesthetics. Anal. Chem. 69, 4120–4125.

    Article  CAS  Google Scholar 

  62. Coon, D. R., Babb, C. W., and Rechnitz, G. A. (1996) Biomagnetic neurosensors. 4. Design and optimization for analytical use. Anal. Chem. 68, 1671–1675.

    Article  CAS  Google Scholar 

  63. Minami, H., Sugawara, M., Odashima, K., Umezawa, Y., Uto, M., Michaelis, E. K., and Kuwana, T. (1991) Ion channel sensors for glutamic acid. Anal. Chem. 63, 2787–2795.

    Article  PubMed  CAS  Google Scholar 

  64. Eldefrawi, A. T., Cao, C. J., Cortes, V. I., Mioduszewski, R. J., Menking, D. E., and Valdes, J. J. (1998) Eukaryotic cell biosensor: The cytosensor microphysiometer, in Affinity Biosensor Techniques and Protocols (Rogers, K. R. and Mulchandani, A., eds.), Humana Press, Totowa, NJ, pp. 223–238.

    Chapter  Google Scholar 

  65. Jardemark, K., Farre, C., Jacobson, I., Zare, R. N., and Orwar, O. (1998) Screening of receptor agonists using antagonist activated patch clamp detection in chemical separations. Anal. Chem. 70, 2468–2474.

    Article  PubMed  CAS  Google Scholar 

  66. Millan, K. M., Saraullo, A., and Mikkelsen, S. R. (1994) Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal. Chem. 66, 2943–2948.

    Article  PubMed  CAS  Google Scholar 

  67. Napier, M. E., Loomis, C. R., Sistare, M. F., Kim, J., Eckhadt, A. E., and Thorp, H. H. (1997) Probing biomolecule recognition with electron transfer: electrochemical sensors for DNA hybridization. Bioconjugate Chem. 8, 906–913.

    Article  CAS  Google Scholar 

  68. Wang, J., Neilson, P. E., Jiang, M., Cai, X., Fernandes, J. R., Grant, D. H., Ozsoz, M., Beglieter, A., and Mouat, M. (1997) Mismatch sensitive hybridization detection by peptide nucleic acids immobilized on a quartz crystal microbalance. Anal. Chem. 69, 5200–5202.

    Article  PubMed  CAS  Google Scholar 

  69. Su, H., Kallury, K. M. R., and Thompson, M. (1994) Interfacial nucleic acid hybridization studied by random primer ìsupï32P labeling and liquid-phase acoustic network analysis. Anal. Chem. 66, 769.

    Article  CAS  Google Scholar 

  70. Wang, J., Jiang, M., Nilsen, T. W., and Getts, R. C. (1998) Dendritic nucleic acid probes for DNA biosensors. J. Am. Chem. Soc. 120, 8281,8282.

    Article  CAS  Google Scholar 

  71. Jordan, C. E., Frutos, A. G., Thiel, A. J., and Corn, R. M. (1997) Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal. Chem. 69, 4939–4947.

    Article  CAS  Google Scholar 

  72. Bates, P. J., Dosanjh, H. S., Kumar, S., Jenkins, T. C., Laughton, C. A., and Neidle, S. (1995) Detection and kinetic studies of triplex formation by oligodeoxynucleotides using real-time biomolecular interaction analysis (BIA). Nucleic Acids Res. 23, 3627–3632.

    Article  PubMed  CAS  Google Scholar 

  73. Abel, A. P., Weller, M. G., Duveneck, G. L., Ehrat, M., and Windmer, H. M. (1996) Fiber-optic evanescent wave biosensor for the detection of oligonucleotides. Anal. Chem. 68, 2905–2912.

    Article  PubMed  CAS  Google Scholar 

  74. Duveneck, G. L., Pawla, K. M., Neuschafer, D., Bar, E., Budack, W., Pieles, U., and Ehrat, M. (1997) Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides. Sens. Acuat. 38–39, 88–95.

    Article  Google Scholar 

  75. Uddin, A. H., Piunno, P. A. E., Hudson, R. H. E., Damha, M. J., and Krull, U. J. (1997) A fiber optic biosensor for fluorimetric detection of triple-helical DNA. Nucleic Acids Res. 25, 4139–4146.

    Article  PubMed  CAS  Google Scholar 

  76. Kleinjung, F. Bier, F. F., Warsinke, A., and Scheller, F. W. (1997) Fibre-optic genosensor for specific determination of femtomolar DNA oligomers. Anal. Chim. Acta 350, 51–58.

    Article  CAS  Google Scholar 

  77. Kalab, T. and Skladal, P. (1997) Disposable multichannel immunosensor for 2,4-dichlorophenoxyacetic acid using acetylcholinesterase as an enzyme label. Electroanal. 9, 293–297.

    Article  CAS  Google Scholar 

  78. Louie, A. S., Marenchic, I. G., and Whelan, R. H. (1998) A fieldable modular biosensor for use in detection of foodborne pathogens. Field Anal. Chem. Technol. 2, 371–377.

    Article  CAS  Google Scholar 

  79. Wang, J., Tian, B., and Rogers K. R. (1998) Thick film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label. Anal. Chem. 70, 1682–1685.

    Article  PubMed  CAS  Google Scholar 

  80. Browne, C., Tarrant, D. H., Olteanu, M. S., Mullens, J. W., and Chronister, E. L. (1996) Intrinsic sol-gel clad fiber optic sensors with time resolved detection. Anal. Chem. 68, 2289–2295.

    Article  CAS  Google Scholar 

  81. Misiakos, K. and Kakabakos, S. E. (1998) A multiband immunosensor. Biosens. Bioelectron. 13, 825–830.

    Article  PubMed  CAS  Google Scholar 

  82. Wadkins, R. M., Golden, J. P., Pritsiolas, L. M., and Ligler, F. S. (1998) Detection of multiple toxic agents using a planar array immunosensor. Biosens. Bioelectron. 13, 407–415.

    Article  PubMed  CAS  Google Scholar 

  83. Hafemen, D. G., Parce, J. W., and McConnell, H. M. (1988) Light addressable potentiometric sensor for biochemical systems. Science 240, 1182–1185.

    Article  Google Scholar 

  84. Granzow, R. and Reed, R. (1992) Interactions in the fourth dimension. Biotechnology 10, 390.

    Article  PubMed  CAS  Google Scholar 

  85. Jonsson, U. and Malmqvist, M. (1992) Real time biospecific analysis. Adv. Biosensors 2, 291–336.

    Google Scholar 

  86. Beir, F. F. and Schmidt, R. D. (1994) Real time analysis of competitive binding using grating coupler immunosensors for pesticide detection. Biosens. Bioelectron. 9, 125–130.

    Article  Google Scholar 

  87. Beir, F. F. and Scheller, F. W. (1996) Label-free observation of DNA-hybridization and endonuclease activity on a waveguide surface using a grating coupler. Biosens. Bioelectron. 11, 669–674.

    Article  Google Scholar 

  88. Jones, V. W., Kenseth, J. R., Porter, M. D., Mosher, C. L., and Henderson, E. (1998) Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal. Chem. 70, 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  89. Chu, X., Jiang, J. H., Shen, G. L., and Yu, R. Q. (1996) Simultanious immunoassay using piezoelectric immunosensor array and robust method. Anal. Chim. Acta 336, 185–193.

    Article  CAS  Google Scholar 

  90. Healey, B. G., Matson, R. S., and Walt, D. R. (1992) Fiberoptic DNA sensor array capable of detecting point mutations. Anal. Biochem. 251, 270–279.

    Article  Google Scholar 

  91. Martin, B. D., Gaber, B. P., Patterson, C. H., and Turner, D. C. (1998) Direct protein microarray fabrication using a hydrogel “stamper.” Langmuir 14, 3971–3975.

    Article  CAS  Google Scholar 

  92. Jones, G., Wortberg, M., Hammock, B. D., and Rocke, D. M. (1996) A procedure for the immunoanalysis of samples containing one or more members of a group of cross-reacting analytes. Anal. Chim. Acta 336, 175–183.

    Article  CAS  Google Scholar 

  93. Nakanishi, K., Masao, A., Sako, Y., Ishida, Y., Muguruma, H., and Karube, I. (1996) Detection of the red tide-causing plankton Alexandrium affine by a piezoelectric immunosensor using a novel method of immobilizing antibodies. Analyt. Lett. 29, 1247–1258.

    CAS  Google Scholar 

  94. Wooley, A. T., Hadley, D., Landre, P., Demello, A. J., Mathies, R. A., and Noarthrup, M. A. (1996) Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 68, 4081–4086.

    Article  Google Scholar 

  95. Hall, J. C., Deschamps, R. J. A., and Krieg, K. K. (1989) Immunoassays for the detection of 2,4-D and Picloam in river water and urine. J. Agric. Food Chem. 37, 981–984.

    Article  CAS  Google Scholar 

  96. Lunskaya, I. M., Eremin, S. A., Egorov, A. M., Kolar, V., and Franek, M. (1993) Use of monoclonal antibodies in a polarization fluoroimmunoanalysis technique for the determination of 2,4-dichlorophenoxyacetic acid (2,4-D). Eurasian Soil Science 25, 118–124.

    Google Scholar 

  97. Dzantiev, B. B., Zherdev, A. V., Romanenko, O. G., and Sapegova, L. A. (1996) Development and comparative study of different immunoenzyme techniques for pesticide detection. Intern. J. Environ. Anal. Chem. 65, 95–111.

    Article  CAS  Google Scholar 

  98. McMorris, C. J., McConnell, R. I., Lamont, J. V., and Fitzgerald, S. P. (1994) Rapid screening of fruit juices and water supplies for contamination by 2,4-D using enzyme immunoassay. Food Agric. Immunol. 6, 261–266.

    CAS  Google Scholar 

  99. Khomutov, S. M., Zherdev, A. V., Dzantiev, B. B., and Reshetilov, A. W. (1994) Immunodetection of herbicide 2,4-dichlorophenoxyacetic acid by field- effect transistor-based biosensors. Analyt. Lett. 27, 2983–2995.

    CAS  Google Scholar 

  100. Minunni, M., Skladal, P., and Mascini, M. (1994) A piezoelectric quartz crystal biosensor as a direct affinity sensor. Analyt. Lett. 27, 1475–1487.

    CAS  Google Scholar 

  101. Strategic Diagnostics Inc. (1999) RaPID Assay® 2,4-D Test Kit Insert, Strategic Diagnostics Inc., 111 Pencader Drive, Newark, DE 19702-3322.

    Google Scholar 

  102. Lukin, Y. V., Dokuchaev, I. M., Polyak, I. M., and Eremin, S. A. (1994) Detection of 2,4-dichlorophenoxyacetic acid by microtiter particle agglutination inhibition test and polarization fluoroimmunoassay. Analyt. Lett. 27, 2973–2982.

    CAS  Google Scholar 

  103. Horacek, J. and Sladal, P. (1997) Improved direct piezoelectric biosensors operating in liquid solution for the competitive label-free immunoassay of 2,4-dichlorophenoxyacetic acid. Anal. Chim. Acta 347, 43–50.

    Article  CAS  Google Scholar 

  104. Rutsova, M. Y., Kovba, G. V., and Egorov, A. M. (1998) Chemiluminescent biosensors based on porous supports with immobilized peroxidase. Biosens. Bioelectron. 13, 75–85.

    Article  Google Scholar 

  105. Trau, D., Theurl, T., Wilmer, M., Meusel, M., and Spener, F. (1997) Development of an amperometric flow injection immunoanalysis system for the detection of the herbicide 2,4-dichlorophenoxyacetic acid in water. Biosens. Bioelectron. 12, 499–510.

    Article  PubMed  CAS  Google Scholar 

  106. Wittmann, C. Bier, F. F., Eremin, S. A., and Schmidt, R. D. (1996) Quantitative analysis of 2,4-dichlorophenoxyacetic acid in water samples by two immunosensing methods. J. Agric. Food Chem. 44, 343–350.

    Article  CAS  Google Scholar 

  107. Minunni, M. and Mascini, M. (1993) Detection of pesticide in drinking water using real-time biospecific interaction analysis (BIA). Analyt. Lett. 26, 1441–1460.

    CAS  Google Scholar 

  108. Klotz A., Brecht, A., Barzen, C., Gauglitz, G., Harris, R. D., Quigley, G. R., Wilkinson, J. S., and Abukmnasha, R. A. (1998) Immunofluorescence sensor for water analysis. Sensors Actuat. B Chemical 51, 181–187.

    Article  Google Scholar 

  109. Rubtsova, M. Y., Whittmann, C., Egrov, A. M., and Schmmidt, R. D. (1997) Chemiluminescent immunoassay application of a portable scanning luminometer for the determination of 2,4-dichlorophenoxyacetic acid in microtiter and membrane strip format. Food Agric. Immonol. 9, 235–247.

    Article  CAS  Google Scholar 

  110. Strategic Diagnostics Inc. (1999) EnviroGaurd® 2,4-D Test Kit Insert 72900, Strategic Diagnostics Inc., 111 Pencader Drive, Newark, DE 19702-3322.

    Google Scholar 

  111. Bauer, C. G., Eremenko, A. V., Ehrentreich-Forster, E., Bier, F. F., Makower, A., Halsall, H. B., Heineman, W. R., and Scheller, F. W. (1996) Zeptomoledetecting biosensor for alkaline phosphatase in an electrochemical immunoassay for 2,4-dichlorophenoxyacetic acid. Anal. Chem. 68, 2453–2458.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim R. Rogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, K.R. Principles of affinity-based biosensors. Mol Biotechnol 14, 109–129 (2000). https://doi.org/10.1385/MB:14:2:109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:14:2:109

Index Entries

Navigation