Skip to main content
Log in

New methods for researching accessory proteins

  • Review
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Receptor activity-modifying proteins (RAMPs) control the pharmacology of the receptors for the calcitonin family of peptide hormones. There are five of these peptides: calcitonin, calcitonix/calcitixin gene-related peptide (CGRP), adrenomedullin, amylin, and now adrenomedullin 2. The calcitonin receptor is specific for calcitonin when expressed alone but it can function as an amylin or CGRP receptor when co-expressed with a RAMP. The calcitonin receptor-like receptor (CRLR) will not reach the cell surface without any one of the three RAMP proteins to function as either a CGRP or adrenomedullin receptor. This system was discovered more than 6 yr ago. At the time, it was reasonable to think that nature would employ accessory proteins, such as the RAMPs, to enable flexible signaling systems for other ligand families and that these would be discovered in time. In reality, many more new peptide ligands have been discovered than accessory proteins. Why is this? Developments in bioinformatics facilitate the discovery of both seven transmembrane ligands and accessory proteins. Proteomics and transcriptomics can be used together to define likely accessory proteins that can be experimentally tested. Comparative genomics was used in the discovery of adrenomedullin 2. The existence of multiple RAMPs within several species of fish suggests an alternative endocrinology. Finally, genetics offers a direct view of receptors, ligands, and accessory proteins in human disease-either as causative or contributing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres-Barquin P. J. and Conte C. (2004) Molecular basis of bitter taste: the T2R family of g protein-coupled receptors. Cell Biochem. Biophys. 41, 99–112.

    Article  PubMed  CAS  Google Scholar 

  • Brezillon S., Lannoy V., Franssen J. D., Le Poul E., Dupriez V., Lucchetti J., et al. (2003) Identification of natural ligands for the orphan G protein-coupled receptors GPR7 and GPR8. J. Biol. Chem. 278, 776–783.

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty P., Suthar T. P., Coppock H. A., Nicholl C. G., Bloom S. R., Legon S., and Smith D. M. (2000) CGRP and adrenomedullin binding correlates with transcript levels for calcitonin receptor-like receptor (CALCR) and receptor activity modifying proteins (RAMPs) in rat tissues. Br. J. Pharmacol. 130, 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Chartrel N., Dujardin C., Anouar Y., Leprince J., Decker A., Clerens S., et al. (2003) Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity. Proc. Natl. Acad. Sci. U. S. A. 100, 15247–15252.

    Article  PubMed  CAS  Google Scholar 

  • Christoffels A., Koh E. G., Chia J. M., Brenner S., Aparicio S., and Venkatesh B. (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol. Biol. Evol. 21, 1146–1151.

    Article  PubMed  CAS  Google Scholar 

  • Coast G. M., Webster S. G., Schegg K. M., Tobe S. S., and Schooley D. A. (2001) The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J. Exp. Biol. 204, 1795–1804.

    PubMed  CAS  Google Scholar 

  • Ernst S., Lange C., Wilbers A., Goebeler V., Gerke V., and Rescher U. (2004) An annexin 1 N-terminal peptide activates leukocytes by triggering different members of the formyl peptide receptor family. J. Immunol. 172, 7669–7676.

    PubMed  CAS  Google Scholar 

  • Foord S. M. (2003) Matching accessories. Sci STKE. 190, 25.

    Google Scholar 

  • Foord S. M. and Craig R. K. (1987) Isolation and characterisation of a human calcitonin-gene-related-peptide receptor. Eur. J. Biochem. 170, 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Fujii R., Yoshida H., Fukusumi S., Habata Y., Hosoya M., Kawamata Y., et al. (2002) Identification of a neuropeptide modified with bromine as an endogenous ligand for GPR7. J. Biol. Chem. 277, 34010–34016.

    Article  PubMed  CAS  Google Scholar 

  • Fukusumi S., Yoshida H., Fujii R., Maruyama M., Komatsu H., Habata Y., et al. (2003) A new peptidic ligand and its receptor regulating adrenal function in rats. J. Biol. Chem. 278, 46387–46395.

    Article  PubMed  CAS  Google Scholar 

  • Galtier N., Gouy M., and Gautier, C. (1996) SEAVIEW and PHYLO_WIN, two graphic tools for sequence alignment and molecular phylogeny. Comput. Applic. Biosci. 12, 543–548.

    CAS  Google Scholar 

  • Grimmond S. M., Miranda K. C., Yuan Z., Davis M. J., Hume D. A., Yagi K., et al.; RIKEN GER Group; GSL Members (2003) The mouse secretome: functional classification of the proteins secreted into the extracellular environment. Genome Res. 13, 1350–1359.

    Article  PubMed  CAS  Google Scholar 

  • Hilairet S., Foord S. M., Marshall F. H., and Bouvier M. (2001) Protein-protein interaction and not glycosylation determines the binding selectivity of heterodimers between the calcitonin receptor-like receptor and the receptor activity-modifying proteins. J. Biol. Chem. 276, 29575–29581.

    Article  PubMed  CAS  Google Scholar 

  • http://fugu.hgmp.mrc.ac.uk

  • http://www.ensembl.org

  • http://www.ncbi.nlm.nih.gov

  • Jiang Y., Gao G., Fang G., Gustafson E. L., Laverty M., Yin Y., et al. (2003a) PepPat, a pattern-based oligopeptide homology search method and the identification of a novel tachykinin-like peptide. Mamm. Genome 14, 341–349. Erratum in Mamm. Genome 14, 580.

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y., Luo L., Gustafson E. L., Yadav D., Laverty M., Murgolo N., et al. (2003b) Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J. Biol. Chem. 278, 27652–27657.

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen K. (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol. Ther. 103, 21–80.

    Article  PubMed  CAS  Google Scholar 

  • Leonoudakis D., Conti L. R., Anderson S., Radeke C. M., McGuire L. M., Adams M. E., et al. (2004) Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins. J. Biol. Chem. 279, 22331–22346.

    Article  PubMed  CAS  Google Scholar 

  • McLatchie L. M., Fraser N. J., Main M. J., Wise A., Brown J., Thompson N., et al. (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339.

    Article  PubMed  CAS  Google Scholar 

  • Meder W., Wendland M., Busmann A., Kutzleb C., Spodsberg N., John H., et al. (2003) Characterization of human circulating TIG2 as a ligand for the orphan receptor ChemR23. FEBS Lett. 555, 495–499.

    Article  PubMed  CAS  Google Scholar 

  • Menne K. M., Hermjakob H., and Apweiler R. (2000) A Comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics 16, 741–742.

    Article  PubMed  CAS  Google Scholar 

  • Moller S., Croning M. D., and Apweiler R. (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646–653.

    Article  PubMed  CAS  Google Scholar 

  • Ogoshi M., Inoue K., and Takei Y. (2003) Identification of a novel adrenomedullin gene family in teleost fish. Biochem. Biophys. Res. Commun. 311, 1072–1077.

    Article  PubMed  CAS  Google Scholar 

  • Page N. M., Bell N. J., Gardiner S. M., Manyonda I. T., Brayley K. J., Strange P. G., and Lowry P. J. (2003) Characterization of the end okinins: human tachykinins with cardiovascular activity. Proc. Natl. Acad. Sci. U. S. A. 100, 6245–6250.

    Article  PubMed  CAS  Google Scholar 

  • Pidoux E. and Cressent M. (2002) Sequencing of a calcitonin receptor-like receptor in salmon Oncorhynchus gorbuscha. Functional studies using the human receptor activity-modifying proteins. Gene 298, 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Roh J., Chang C. L., Bhalla A., Klein C., and Hsu S. Y. (2004) Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J. Biol. Chem. 279, 7264–7274.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura Y., Harada M., Goto M., Sugo T., Matsumoto Y., Abe M., et al. (2002) Identification of neuropeptide W as the endogenous ligand for orphan G-protein-coupled receptors GPR7 and GPR8. J. Biol. Chem. 277, 35826–35832.

    Article  PubMed  CAS  Google Scholar 

  • Simonin F., Karcher P., Boeuf J. J., Matifas A., and Kieffer B. L. (2004) Identification of a novel family of G protein-coupled receptor associated sorting proteins. J. Neurochem. 89, 766–775.

    Article  PubMed  CAS  Google Scholar 

  • Stacey M., Chang G. W., Davies J. Q., Kwakkenbos M. J., Sanderson R. D., Hamann J., et al. (2003) The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102, 2916–2924.

    Article  PubMed  CAS  Google Scholar 

  • Stacey M., Lin H. H., Hilyard K. L., Gordon S., and McKnight A. J. (2001) Human epidermal growth factor (EGF) module-containing mucin-like hormone receptor 3 is a new member of the EGF-TM7 family that recognizes a ligand on human macrophages and activated neutrophils. J. Biol. Chem. 276, 18863–18870.

    Article  PubMed  CAS  Google Scholar 

  • Takei Y., Inoue K., Ogoshi M., Kawahara T., Bannai H., and Miyano S. (2004) Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Lett. 556, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., et al. (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H., Yoshida T., Miyamoto N., Motoike T., Kurosu H., Shibata K., et al. (2003) Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8. Proc. Natl. Acad. Sci. U. S. A. 100, 6251–6256.

    Article  PubMed  CAS  Google Scholar 

  • Terrillon S. and Bouvier M. (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep. 5, 30–34.

    Article  PubMed  CAS  Google Scholar 

  • Tobaben S., Sudhof T. C., and Stahl B. (2002) Genetic analysis of alpha-latrotoxin receptors reveals functional interdependence of CIRL/latrophilin 1 and neurexin 1 alpha. J. Biol. Chem. 277, 6359–6365.

    Article  PubMed  CAS  Google Scholar 

  • Udawela M., Hay D. L., and Sexton P. M. (2004) The receptor activity modifying protein family of G protein coupled receptor accessory proteins. Semin. Cell. Dev. Biol. 15, 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Wobus M., Vogel B., Schmucking E., Hamann J., and Aust G. (2004) N-glycosylation of CD97 within the EGF domains is crucial for epitope accessibility in normal and malignant cells as well as CD55 ligand binding. Int. J. Cancer 112(5), 815–822.

    Article  PubMed  CAS  Google Scholar 

  • Xu Q., Wang Y., Dabdoub A., Smallwood P. M., Williams J., Woods C., et al. (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y. L., Reinscheid R. K., Huitron-Resendiz S., Clark S. D., Wang Z., Lin S. H., et al. (2004) Neuropeptide S; a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43, 487–497.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Lu L., Furlonger C., Wu G. E., and Paige C. J. (2000) Hemokinin is a hematopoietic-specific tachykinin that regulates B lymphopoiesis. Nat. Immunol. 1, 392–397.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Foord.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foord, S.M., Topp, S.D., Abramo, M. et al. New methods for researching accessory proteins. J Mol Neurosci 26, 265–276 (2005). https://doi.org/10.1385/JMN:26:2-3:265

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:26:2-3:265

Index Entries

Navigation