Skip to main content
Log in

Function of tumor necrosis factor receptor family members on regulatory T-cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Effector cells play a crucial role in the immune system of higher vertebrates in eliminating invading pathogens and transformed cells that could cause disease or death of the individual. To be effective and specific, immune responses have to distinguish between self and nonself. Mechanisms of central and peripheral tolerance have evolved to control effector cells that could respond to autoantigens. Regulatory T-cells (Treg cells) are critical modulators of effector cells in the periphery that suppress autoreactive T-cells but are also involved in modulating immune responses against invading pathogens. Identification of surface markers of Treg cells and the development of in vitro systems to study the suppressive function of Treg cells have revealed distinct phenotypic and functional subsets of Treg cells. Several tumor necrosis factor receptor (TNFR) family members have been shown to play a role in the development, homeostasis, and suppressor function of Treg cells. Recent findings suggest that TNFRs and other cell-surface molecules of Treg cells can be explored for therapeutic strategies targeting autoimmune disorders, cancer, and immune responses against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Parkin J, Cohen B: An overview of the immune system. Lancet 2001;357:1777–1789.

    Article  PubMed  CAS  Google Scholar 

  2. Thompson CB: Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson G, Moore NC, Owen JJ, Jenkinson EJ: Cellular interactions in thymocyte development. Annu Rev Immunol 1996;14:73–99.

    Article  PubMed  CAS  Google Scholar 

  4. von Boehmer H, Aifantis I, Gounari F, et al: Thymic selection revisited: how essential is it? Immunol Rev 2003;191:62–78.

    Article  Google Scholar 

  5. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 1994;12:337–365.

    Article  PubMed  CAS  Google Scholar 

  6. Wekerle H, Bradl M, Linington C, Kaab G, Kojima K: The shaping of the brain-specific T lymphocyte repertoire in the thymus. Immunol Rev 1996;149:231–243.

    Article  PubMed  CAS  Google Scholar 

  7. Weigle WO: Analysis of autoimmunity through experimental models of thyroiditis and allergic encephalomyelitis. Adv Immunol 1980;30:159–273.

    PubMed  CAS  Google Scholar 

  8. Hori S, Takahashi T, Sakaguchi S: Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 2003;81:331–371.

    Article  PubMed  CAS  Google Scholar 

  9. Nishizuka Y, Sakakura T: Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969;166:753–755.

    Article  PubMed  CAS  Google Scholar 

  10. Penhale WJ, Farmer A, McKenna RP, Irvine WJ: Spontaneous thyroiditis in thymectomized and irradiated Wistar rats. Clin Exp Immunol 1973;15:225–236.

    PubMed  CAS  Google Scholar 

  11. Sakaguchi S: Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000;101:455–458.

    Article  PubMed  CAS  Google Scholar 

  12. Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T: Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cell subset. 1. Evidence for the active participation of T cells in natural self-tolerance: deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 1985;161:72–87.

    Article  PubMed  CAS  Google Scholar 

  13. Powrie F, Mason D: OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med 1990;172:1701–1708.

    Article  PubMed  CAS  Google Scholar 

  14. Annacker O, Burlen-Defranoux O, Pimenta-Araujo R, Cumano A, Bandeira A: Regulatory CD4 T cells control the size of the peripheral activated/memory CD4 T cell compartment. J Immunol 2000;164:3573–3580.

    PubMed  CAS  Google Scholar 

  15. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F: An essential role for interleukin 10 in the function of regulatory T cells that inhibit in testinal inflammation. J Exp Med 1999;190:995–1004.

    Article  PubMed  CAS  Google Scholar 

  16. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptorα-chains (CD25): break-down of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155:1151–1164.

    PubMed  CAS  Google Scholar 

  17. Dittmer U, He H, Messer RJ, et al: Fuctional impairment of CD8+ T cells by regulatory T cells during persistent retroviral infection, Immunity 2004;20:293–303.

    Article  PubMed  CAS  Google Scholar 

  18. Mendez S, Reckling SK, Piccirillo CA, Sacks D, Belkaid Y: Role for CD4+ CD25+ regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 2004;200:201–210.

    Article  PubMed  CAS  Google Scholar 

  19. Kinter AL, Hennessey M, Bell A, et al: CD25+ CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 2004;200:331–343.

    Article  PubMed  CAS  Google Scholar 

  20. Itoh M, Takahashi T, Sakaguchi N, et al: Thymus and autoimmunity: production of CD25+ CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999;162:5317–5326.

    PubMed  CAS  Google Scholar 

  21. Papiernik M, de Moraes ML, Pontoux C, Vaseur F, Pénit C: Regulatory CD4 T cells: expression of IL-2Rα chain resistance to clonal deletion and IL-2 dependency. Int Immunol 1998;10:371–378.

    Article  PubMed  CAS  Google Scholar 

  22. Bensinger SJ, Bandeira A, Jordan MS, Caton AJ, Laufer TM: Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+ 25+ immunoregulatory T cells. J Exp Med 2001;194:427–438.

    Article  PubMed  CAS  Google Scholar 

  23. Jordan MS, Boesteanu A, Reed AJ, et al: Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001;2:301–306.

    Article  PubMed  CAS  Google Scholar 

  24. Godfrey VL, Wilkinson JE, Russell LB: X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 1991;138:1379–1387.

    PubMed  CAS  Google Scholar 

  25. Bennett CL, Christie J, Ramsdell F, et al: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27:20, 21.

    Article  PubMed  CAS  Google Scholar 

  26. Wildin RS, Ramsdell F, Peake J, et al: X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001;27:18–20.

    Article  PubMed  CAS  Google Scholar 

  27. Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 2003;4:330–336.

    Article  PubMed  CAS  Google Scholar 

  28. Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057–1061.

    Article  PubMed  CAS  Google Scholar 

  29. Fehérvari Z, Sakaguchi S: Development and function of CD25+ CD4+ regulatory T cells. Curr Opin Immunol 2004;16:203–208.

    Article  PubMed  CAS  Google Scholar 

  30. Kasow KA, Chen X, Knowles J, Wichlan D, Handgretinger R, Riberdy JM: Human CD4+ CD25+ regulatory T cells share equally complex and comparable repertoires with CD4+ CD25 counterparts. J Immunol 2004;172:6123–6128.

    PubMed  CAS  Google Scholar 

  31. Cottrez F, Groux H: Specialization in tolerance: innate CD4+ CD25+ versus acquied TR1 and TH3 regulatory T cells. Transplantation 2004;77:S12-S15.

    Article  PubMed  Google Scholar 

  32. Vigouroux S, Yvon E, Biagi E, Brenner MK: Antigen-induced regulatory T cells. Blood 2004;104:26–33.

    Article  PubMed  CAS  Google Scholar 

  33. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL: Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994;265:1237–1240.

    Article  PubMed  CAS  Google Scholar 

  34. Apostolou I, von Boehmer H: In vivo instruction of suppressor commitment in naive T cells. J Exp Med 2004;199:1401–1408.

    Article  PubMed  CAS  Google Scholar 

  35. Cobbold SP, Castejon R, Adams E, et al: Induction of foxP3 + regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 2004;172:6003–6010.

    PubMed  CAS  Google Scholar 

  36. Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler SF, Offner H: Cutting edge: estrogen drives expansion of the CD4+ CD25+ regulatory T cell compartment. J Immunol 2004;173:2227–2230.

    PubMed  CAS  Google Scholar 

  37. Groux H, O’Garra A, Bigler M, et al: ACD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997;389:737–742.

    Article  PubMed  CAS  Google Scholar 

  38. Barrat FJ, Cua DJ, Boonstra A, et al: In vitro generation of interleukin 10-producing regulatory CD4 +T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)-and Th2-inducing cytokines. J Exp Med 2002;195:603–616.

    Article  PubMed  CAS  Google Scholar 

  39. Vieira PL, Christensen JR, Minaee S, et al: IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+ CD25+ regulatory T cells. J Immunol 2004;172:5986–5993.

    PubMed  CAS  Google Scholar 

  40. Unger WW, Hauet-Broere F, Jansen W, van Berkel LA, Kraal G, Samsom JN: Early events in peripheral regulatory T cell induction via the nasal mucosa. J Immunol 2003;171:4592–4603.

    PubMed  CAS  Google Scholar 

  41. Unger WW, Jansen W, Wolvers DA, van Halteren AG, Kraal G, Samsom JN: Nasal tolerance induces antigenspecific CD4+ CD25 regulatory T cells that can transfer their regulatory capacity to naive CD4+ T cells., Int Immunol 2003;15:731–739.

    Article  PubMed  CAS  Google Scholar 

  42. Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP: Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 2003;421:388–392.

    Article  PubMed  CAS  Google Scholar 

  43. Sadlack B, Lohler J, Scorle H, et al: Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+T cells. Eur J Immunol 1995;25:3053–3059.

    Article  PubMed  CAS  Google Scholar 

  44. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I: Ulcerative colitis-like disease inmice with a disrupted interleukin-2 gene. Cell 1993;75:253–261.

    Article  PubMed  CAS  Google Scholar 

  45. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW: Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immnity 1995;3:521–530.

    Article  CAS  Google Scholar 

  46. Bachmann MF, Kohler G, Ecabert B, Mak TW, Kopf M: Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 1999;163:1128–1131.

    PubMed  CAS  Google Scholar 

  47. Takahashi T, Tagami T, Yamazaki S, et al: Immunologic self-tolerance maintained by CD25+ CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000;192;303–310.

    Article  PubMed  CAS  Google Scholar 

  48. Vasu C, Prabhakar BS, Holterman MJ: Targeted CTLA-4 engagement induces CD4+ CD25+ CTLA-4high T regulatory cells with target (allo)antigen specificity. J Immunol 2004;173:2866–2876.

    PubMed  CAS  Google Scholar 

  49. Read S, Malmstrom V., Powrie F: Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+ CD4+ regulatory cells that control intestinal inflammation. J Exp Med 2000;192:295–302.

    Article  PubMed  CAS  Google Scholar 

  50. Eggena MP, Walker LS, Nagabhushanam V, Barron L, Chodos A, Abbas AK: Cooperative roles of CTLA-4 and regulatory t cells in tolrance to an islet cell antigen. Exp Med 2004;199:1725–1730.

    Article  CAS  Google Scholar 

  51. Takahashi T, Kuniyasu Y, Toda M, et al: Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998;10:1969–1980.

    Article  PubMed  CAS  Google Scholar 

  52. Godfrey WR, Ge YG, Spoden DJ, et al: In vitro-expanded human CD4+ CD25+ T-regulatory cells can markedly inhibit allogenic dendritic cell-stimulated MLR cultures. Blood 2004;104:453–461.

    Article  PubMed  CAS  Google Scholar 

  53. Paust S, Lu L, McCarty N, Cantor H: Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 2004;101:10,398–10,403.

    Article  CAS  Google Scholar 

  54. Herman AE, Freeman GJ, Mathis D, Benoist C: CD4+ CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J. Exp Med 2004;199:1479–1489.

    Article  PubMed  CAS  Google Scholar 

  55. Peng Y, Laouar Y, Li MO, Green EA, Flavell RA: TGF-β regulates in vivo expansion of Foxp 3-expressing CD4+ CD25+ regulatory T cells responsible for protection agianst diabetes. Proc Natl Acad Sci USA 2004;101:4572–4577.

    Article  PubMed  CAS  Google Scholar 

  56. Arch RH, Thompson CB: Lymphocyte survival—the struggle against death. Annu Rev Cell Dev Biol 1999;15:113–140.

    Article  PubMed  CAS  Google Scholar 

  57. Ashkenazi A: Targeting death and decoy receptors of the tumour-necrosis factor superfoamily. Nat Rev Cancer 2002;2:420–430.

    Article  PubMed  CAS  Google Scholar 

  58. Hehlgans T, Mannel DN: The TNF-TNF receptor system. Biol Chem 2002;383:1581–1585.

    Article  PubMed  CAS  Google Scholar 

  59. Chan FK, Chun HJ, Zheng L, Siegel RM, Bui KL, Lenardo MJ: A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000;288:2351–2354.

    Article  PubMed  CAS  Google Scholar 

  60. Siegel RM, Frederiksen JK, Zacharias DA, et al: Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000;288:2354–2357.

    Article  PubMed  CAS  Google Scholar 

  61. Jiang Y, Woronicz JD, Liu W, Goeddel DV: Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 1999;283:543–546.

    Article  PubMed  CAS  Google Scholar 

  62. Arch RH, Gedrich RW, Thompson CB: Tumor necrosis factor receptor-associated factors (TRAFs)—a family of adapter proteins that regulates life and death. Genes Dev 1998;12:2821–2830.

    PubMed  CAS  Google Scholar 

  63. Dempsey PW, Doyle SE, He JQ, Cheng G: The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003;14:193–209.

    Article  PubMed  CAS  Google Scholar 

  64. Kischkel FC, Hellbardt S, Behrmann I, et al: Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995;14:5579–5588.

    PubMed  CAS  Google Scholar 

  65. Peter ME, Krammer PH: Mechanisms of CD95 (APO-1/Fas)-mediate apoptosis. Curr Opin Immunol 1998;10:545–551.

    Article  PubMed  CAS  Google Scholar 

  66. Shi Y: Mechanisms of caspase activitation and inhibition during apoptosis. Mol Cell 2002;9:459–470.

    Article  PubMed  CAS  Google Scholar 

  67. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME: Apoptosis signaling by death eceptors. Eur J Biochem 1998;254:439–459.

    Article  PubMed  CAS  Google Scholar 

  68. O’Reilly LA, Strasser A: Apoptosis and autoimmune disease. Inflamm Res 1999;48:5–21.

    Article  PubMed  CAS  Google Scholar 

  69. Baud V, Karin M: Signal tranduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001;11:372–377.

    Article  PubMed  CAS  Google Scholar 

  70. Rothe M, Wong SC, Henzel WJ, Goeddel DV: A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDA tumor necrosis factor receptor. Cell 1994;78:681–692.

    Article  PubMed  CAS  Google Scholar 

  71. Hsu H, Shu HB, Pan MG, Goeddel DV: TRADD-TRAF2 and TRADD-FADD interactions define two distincet TNF receptor 1 signal transduction pathways. Cell 1996;84:299–308.

    Article  PubMed  CAS  Google Scholar 

  72. Park YC, Ye H, Hsia C, et al: A novel mechanism of TRAF signaling revealred by structural and functional analyses of the TRADD-TRAF2 interaction. Cell 2000;101:777–787.

    Article  PubMed  CAS  Google Scholar 

  73. Karin M, Lin A: NF-κB at the crossroads of life and death. Nat Immunol 2002;3:221–227.

    Article  PubMed  CAS  Google Scholar 

  74. Chung JY, Park YC, Ye H, Wu H: All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 2002;115:679–688.

    PubMed  CAS  Google Scholar 

  75. Wajant H, Henkler F, Scheurich P: The TNF-receptorassociated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 2001;13:389–400.

    Article  PubMed  CAS  Google Scholar 

  76. Ye H, Park YC, Kreishman M, Kieff E, Wu H: The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell 1999;4:321–330.

    Article  PubMed  CAS  Google Scholar 

  77. Takeuchi M, Rothe M, Goeddel DV: Anatomy of TRAF2: distinct domains for nuclear factor- кB activation and association with tumor necrosis factor signaling proteins. J Biol Chem 1996;271:19,935–19,942.

    CAS  Google Scholar 

  78. Rothe M, Sarma V, Dixit VM, Goeddel DV: TRAF2-mediated activation of NF-кB by TNF receptor 2 and CD40. Science 1995;269:1424–1427.

    Article  PubMed  CAS  Google Scholar 

  79. Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M: Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an aminio-terminal effector domain. Genes Dev 1999;13:1297–1308.

    PubMed  CAS  Google Scholar 

  80. Reinhard C, Shamoon B, Shyamala V, Williams LT; Tumor necrosis factorα-induced activation of c-jun N-terminal kinase is mediated by TRAF2. EMBO J 1997;16:1080–1092.

    Article  PubMed  CAS  Google Scholar 

  81. Beg AA, Baltimore D: An essential role for NF-κB in preventing TNF- α-induced cell death. Science 1996;274:782–784.

    Article  PubMed  CAS  Google Scholar 

  82. Shaulian E, Karin M: AP-1 in cell proliferation and survival. Oncogene 2001;20:2390–2400.

    Article  PubMed  CAS  Google Scholar 

  83. Chandel NS, Schumacker PT, Arch RH: Reactive oxygen species are downstram products of TRAF-mediated signal transduction. J Biol Chem 2001;276:42,728–42,736.

    Article  CAS  Google Scholar 

  84. Schreck R, Rieber P, Baeuerle PA: Reactive oxygen intermediates as apparently widelty used messengers in the activation of the NF- κB transcription factor and HIV-1. EMBO J 1991;110:2247–2258.

    Google Scholar 

  85. Tsitskikov EN, Laouini D, Dunn JF, et al: TRAF1 is a negative regulator of TNF signaling: enhanced TNF signaling in TRAF1-deficient mice. Immunity 2001; 15:647–657.

    Article  Google Scholar 

  86. Yeh WC, Shainian A, Speiser D, et al: Early lethality, functional NF-κB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997;7:715–725.

    Article  PubMed  CAS  Google Scholar 

  87. Xu Y, Cheng G, Baltimore D: Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity 1996;5:407–415.

    Article  PubMed  CAS  Google Scholar 

  88. Nakano H, Sakon S, Koseki H, et al: Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc Natl Acad Sci USA 1999;96:9803–9808.

    Article  PubMed  CAS  Google Scholar 

  89. Lomaga MA, Yeh WC, Sarosi I, et al: TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999;13:1015–1024.

    PubMed  CAS  Google Scholar 

  90. Bouwmeester T, Bauch R, Ruffner H, et al: A physical and functional map of the human TNFα/NF-κB signal transduction pathway. Nat Cell Biol 2004;6:97–105.

    Article  PubMed  CAS  Google Scholar 

  91. Gurney AL, Marsters SA, Huang RM, et al: Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr Biol 1999;9:215–218.

    Article  PubMed  CAS  Google Scholar 

  92. Nocentini G, Giunchi L, Ronchetti S, et al: A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA 1997;94:6216–6221.

    Article  PubMed  CAS  Google Scholar 

  93. Ronchetti S, Nocentini G, Riccardi C, Pandolfi PP: Role of GITR in activation response of T lymphocytes. Blood 2002;100:350–352.

    Article  PubMed  CAS  Google Scholar 

  94. Tone M, Tone Y, Adams E, et al: Mouse glucocorticoidinduced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci USA 2003;100:15,059–15,064.

    Article  CAS  Google Scholar 

  95. McHugh RS, Whitters MJ, Piccirillo CA, et al: CD4+ CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002;16:311–323.

    Article  PubMed  CAS  Google Scholar 

  96. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S: Stimulation of CD25+ CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002;22:135–142.

    Article  CAS  Google Scholar 

  97. Uraushihara K, Kanai T, Ko K, et al: Regulation of murine inflammatory bowel disease by CD25+ and CD25 CD4+ glucocorticoid-induced TNF receptor family-related gene+ regulatory T cells. J Immunol 2003;171:708–716.

    PubMed  CAS  Google Scholar 

  98. Tone M, Tone Y, Adams E, et al: Mouse glucocorticoidinduce tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci USA 2003;100;15,059–15,064.

    Article  CAS  Google Scholar 

  99. Kanamura F, Youngnak P, Hashiguchi M, et al: Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+T cells. J Immunol 2004;172:7306–7314.

    Google Scholar 

  100. Muriglan SJ, Ramirez-Montagut T, Alpdogan O, et al: GITR activation induces an opposite effect on alloreactive CD4+ and CD8+ T cells in graft-versus-host disease. J Exp Med 2004;200:149–157.

    Article  PubMed  CAS  Google Scholar 

  101. Ronchetti S, Zollo O, Bruscoli S, et al: Frontline: GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 2004;34:613–622.

    Article  PubMed  CAS  Google Scholar 

  102. Kwon B, Yu KY, Ni J, et al: Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfiamily and its ligand. J Biol Chem 1999;274:6056–6061.

    Article  PubMed  CAS  Google Scholar 

  103. Walsh MC, Choi Y: Biology of the TRANCE axis. Cytokien Growth Factor Rev 2003;14:251–263.

    Article  CAS  Google Scholar 

  104. Green EA, Choi Y, Flavell RA: Pancreatic lymph node-derived CD4+ CD25+ Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 2002;16:183–191.

    Article  PubMed  CAS  Google Scholar 

  105. Schönbeck U, Libby P: The CD40/Cd154 receptor/ligand dyad. Cell Mol Life Sci 2001;58:4–43.

    Article  PubMed  Google Scholar 

  106. Singh B, Read S, Asseman C, et al: Control of intestinal inflammation by regulatory T cells. Immunol Rev 2001;182:190–200.

    Article  PubMed  CAS  Google Scholar 

  107. Kumanogoh A, Wang X, Lee I, et al: Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development. J Immunol 2001;166:353–360.

    PubMed  CAS  Google Scholar 

  108. Serra P, Amarani A, Yamanouchi J, et al: CD40 ligation releases immature dendritic cells from the control of regulatory CD4+ CD25+ T cells. Immunity 2003;19:877–889.

    Article  PubMed  CAS  Google Scholar 

  109. Yang Y, Wilson JM: CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40. Science 1996;273:1862–1864.

    Article  PubMed  CAS  Google Scholar 

  110. Parker DC, Grener DL, Phillips NE, et al: Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc Natl Acad Sci USA 1995;92:9560–9564.

    Article  PubMed  CAS  Google Scholar 

  111. Markees TG, Phillips NE, Noelle RJ, et al: Prolonged survival of mouse skin allografts in recipients treated with donor splenocytes and antibody to CD40 ligand. Transplantation 1997;64:329–335.

    Article  PubMed  CAS  Google Scholar 

  112. Markees TG, Serreze DV, Phillips NE, et al: NOD mice have a generalized defect in their response to transplantation tolerance induction. Diabetes 1999;48:964–974.

    Article  Google Scholar 

  113. Mallett S, Fossum S, Barclay AN: Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes—a molecule related to nerve growth factor receptor. EMBO J 1990;9:1063–1068.

    PubMed  CAS  Google Scholar 

  114. Calderhead DM, Buhlmann JE, van den Eertwegh AJ, Classen E, Noelle RJ, Fell HP: Cloning of mouse OX40: a T cell activation marker that may mediate T-B cell interactions. J Immunol 1993;151:5261–5271.

    PubMed  CAS  Google Scholar 

  115. Latza U, Dürkop H, Schnittger S, et al: The human IOX40 homolog: cDNA structure, expression and chromosomal assignment of the ACT35 antigen. Eur J Immunol 1994;24:677–683.

    Article  PubMed  CAS  Google Scholar 

  116. Roos A, Schilder-Tol EJ, Weening JJ, Aten J: Strong expression of CD134 (OX40), a member of the TNF receptor family, in a T helper 2-type cytokine environment. J Leukoc Biol 1998;64:503–510.

    PubMed  CAS  Google Scholar 

  117. Takeda I, Ine S, Killeen N, et al: Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 2004;172:3580–3589.

    PubMed  CAS  Google Scholar 

  118. Toennies HM, Green JM, Arch RH: Expression of CD30 and Ox40 on T lymphocyte subsets is controlled by distinct regulatory mechanisms. J Leukoc Biol 2004;75:350–357.

    Article  PubMed  CAS  Google Scholar 

  119. Zheng G, Wang B, Chen A: The 4-1BB costimulation augments the proliferation of CD4+ CD25+ regulatory T cells. J Immunol 2004;173:2428–2434.

    PubMed  CAS  Google Scholar 

  120. Stein H, Mason DY, Gerdes J, et al: The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 1985; 66:848–858.

    PubMed  CAS  Google Scholar 

  121. Dürkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H: Moleclar cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 1992; 68:421–427.

    Article  PubMed  Google Scholar 

  122. Gilfillan MC, Noel PJ, Podack ER, Reiner SL, Thompson CB: Expression of the costimulatory recentor CD30 is regulated by both CD28 and cytokines. J Immunol 1998;160:2180–2187.

    PubMed  CAS  Google Scholar 

  123. Chiarle R, Podda A, Prolla G, Podack ER, Thorbecke GJ, Inghirami G: CD30 overexpression enhances negative selection in the thymus and mediates programmed cell death via a Bcl-2-sensitive pathway. J Immunol 1999;163:194–205.

    PubMed  CAS  Google Scholar 

  124. Amakawa R, Hakem A, Kundig TM, et al: Impaired negative selection of T cells in Hodgkin’s disease antigen CD30-deficient mice. Cell 1996;84:551–562.

    Article  PubMed  CAS  Google Scholar 

  125. Arch RH, Gedrich RW, Thompson CB: Translocation of TRAF proteins regulates apoptotic threshold of cells. Biochem Biophys Res Commun 2000;272:936–945.

    Article  PubMed  CAS  Google Scholar 

  126. Berro AI, Perry GA, Agrawal DK: Increased expression and activation of CD30 induce apoptosis in human blood eosinophils. J Immnol 2004;173:2174–2183.

    CAS  Google Scholar 

  127. Arch RH, Thompson CB: 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor κB. Mol Cell Biol 1998;18:558–565.

    PubMed  CAS  Google Scholar 

  128. Dai Z, Li Q, Wang Y, Gao G, Diggs LS, Tellides G, Lakkis FG: CD4+ CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest 2004;113:310–317.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Arch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arch, R.H. Function of tumor necrosis factor receptor family members on regulatory T-cells. Immunol Res 32, 15–29 (2005). https://doi.org/10.1385/IR:32:1-3:015

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:32:1-3:015

Key Words

Navigation