Skip to main content
Log in

Regulation of immune responses by CD1d-restricted natural killer T cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Natural killer T (NKT) cells are a unique subset of T lymphocytes that share receptor structures and properties with conventional T lymphocytes and natural killer (NK) cells. NKT cells are specific for glycolipid antigens such as the marine sponge-derived agent α-galactosylceramide (α-GalCer) presented by the major histocompatibility complex (MHC) class I-like molcule CD1d. My laboratory has evaluated the function of NKT cells by generating and analyzing CD1d-deficient mice. These studies showed that CD1d expression is required for NKT cell development, but not absolutely necessary for the generation of polarized T helper (Th) cell responses. Further, we have studied the in vivo response of NKT cells toα-GalCer stimulation and the capacity of α-GalCer to modulate innate and adaptive immune responses. Our results revealed that, quickly following administration of α-GalCer, NKT cells expand and produce cytokines, trans-activate a variety of innate and adaptive immune cells, and promote Th2 responses that are capable of suppressing Th1-dominant autoimmunity. Our findings indicate that NKT cells play a regulatory role in the immune response and that specific activation of these cells may be exploited for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zinkernagel RM, Doherty PC: Restriction of in vitro T cell mediated cytotoxicity in lymphocytic chriomeningitis within a syngeneic and semi-allogeneic system. Nature 1974;248:701–702.

    Article  PubMed  CAS  Google Scholar 

  2. Porcelli SA, Modlin RL: The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev Immunol 1999;17:297–329.

    Article  PubMed  CAS  Google Scholar 

  3. Zeng Z, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA: Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 1997;277:339–345.

    Article  PubMed  CAS  Google Scholar 

  4. Joyce S, Woods AS, Yewdell JW, et al.: Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 1998;279:1541–1544.

    Article  PubMed  CAS  Google Scholar 

  5. Joyce S, Van Kaer L: CD1-restricted antigen presentation: an oily matter. Curr Opin Immunol 2003; 15:95–104.

    Article  PubMed  CAS  Google Scholar 

  6. Bendelac A, Rivera MN, Park SH, Roark JH: Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 1997;15:535–562.

    Article  PubMed  CAS  Google Scholar 

  7. Taniguchi M, Harada M, Kojo S, Nakayama T, Wakao H: The regulatory role of Val 4 NKT cells in innate and acquired immune response. Annu Rev Immunol 2003; 21:483–513.

    Article  PubMed  CAS  Google Scholar 

  8. Bendelac A, Killeen N, Littman DR, Schwartz RH: A subset of CD4+ thymocytes selected by MHC class I molecules. Science 1994;263:1774–1778.

    Article  PubMed  CAS  Google Scholar 

  9. Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L: CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 1997;6:469–477.

    Article  PubMed  CAS  Google Scholar 

  10. Chen YH, Chin NM, Mandal M, Wang N, Wang CR: Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 1997;6:459–467.

    Article  PubMed  CAS  Google Scholar 

  11. Smiley ST, Kaplan MH, Grusby MJ: Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 1997;275:977–979.

    Article  PubMed  CAS  Google Scholar 

  12. Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR: CD1 recognition by mouse NK1+ T lymphocytes. Science 1995;268:863–865.

    Article  PubMed  CAS  Google Scholar 

  13. Godfrey DI, Hammond KJ, Poulton LD, Smyth MJ, Baxter AG: NKT cells: facts, functions and fallacies Immunol Today 2000;21:573–583.

    Article  PubMed  CAS  Google Scholar 

  14. Kronenberg M, Gapin L: The unconventional lifestyle of NKT cells. Nat Rev Immunol 2002;2:557–568.

    PubMed  CAS  Google Scholar 

  15. Joyce S: CD1d and natural Tcells: how their properties jump-start the immune system. Cell Mol Life Sci 2001;58:442–469.

    Article  PubMed  CAS  Google Scholar 

  16. Yoshimoto T, Bendelac A, Watson C, Hu-Li J, Paul WE: Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science 1995;270: 1845–1847.

    Article  PubMed  CAS  Google Scholar 

  17. Shawar SM, Vyas JM, Rodgers JR, Rich RR: Antigen presentation by major histocompatibility complex class I-b molecules. Annu Rev Immunol 1994;12:839–880.

    Article  PubMed  CAS  Google Scholar 

  18. Hong S, Scherer DC, Singh N, et al.: Lipid antigen presentation in the immune system: lessons learned from CD1d knockout mice. Immunol Rev 1999;169:31–44.

    Article  PubMed  CAS  Google Scholar 

  19. Roopenian DC, Christianson GJ, Sproule TJ, et al.: The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 2003;170:3528–3533.

    PubMed  CAS  Google Scholar 

  20. Delovitch TL, Wilson SB: Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 2003:3:211–222.

    Article  PubMed  Google Scholar 

  21. Natori T, Koezuka Y, Higa T: Agelasphins, novel α-galactosylceramides from the marine sponge Agelas Mauritianus. Tetrahedron Lett 1993;34:5591–5592.

    Article  CAS  Google Scholar 

  22. Kawano T, Cui J, Koezuka Y, et al.: CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 1997:278:1626–1629.

    Article  PubMed  CAS  Google Scholar 

  23. Sidobre S, Naidenko OV, Sim BC, Gascoigne NR, Garcia KC, Kronenberg M: The V α14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J Immunol 2002:169:1340–1348.

    PubMed  CAS  Google Scholar 

  24. Cantu Cr, Benlagha K, Savage PB, Bendelac A, Teyton L: The paradox of immune molecular recognition of α-galactosylceramide: low affinity, low specificity for CD1d, high affinity for αβ TCRs. J Immunol 2003; 170:4673–4682.

    PubMed  CAS  Google Scholar 

  25. Stanic AK, Shashidharamurthy R, Bezbradica JS, et al.: Another view of T cell antigen recognition: co-operative engagement of glycolipid antigens by Va14Ja18natural T cell receptor. J Immunol 2003;171:4539–4551.

    PubMed  CAS  Google Scholar 

  26. Eberl G, MacDonald HR: Rapid death and regeneration of NKT cells in anti-CD3epsilon-or IL-12-treated mice: a major role for bone marrow in NKT cell homeostasis. Immunity 1998;9:345–353

    Article  PubMed  CAS  Google Scholar 

  27. Eberl G, MacDonald HR: Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 2000;30:985–992.

    Article  PubMed  CAS  Google Scholar 

  28. Leite-de-Moraes MC, Herbelin A, Gouarin C, Koezuka Y, Schneider E, Dy M: Fas/Fas ligand interactions promote activation-induced cell death of NK T lymphocytes. J Immunol 2000;165:4367–4371.

    PubMed  CAS  Google Scholar 

  29. Wilson MT, Singh AK, Van Kaer L: Immunotherapy with ligands of natural killer T cells. Trends Mol Med 2002;8:225–231.

    Article  PubMed  CAS  Google Scholar 

  30. Wilson MT, Van Kaer L: Natural killer Tcells as targets for therapeutic intervention in autoimmune diseases. Curr Pharm Des 2003;9:201–220.

    Article  PubMed  CAS  Google Scholar 

  31. Burdin N, Brossay L, Kronenberg M: Immunization with α-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 1999;29:2014–2025.

    Article  PubMed  CAS  Google Scholar 

  32. Singh N, Hong S, Scherer DC, et al.: Activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999;163:2373–2377.

    PubMed  CAS  Google Scholar 

  33. Fujii S, Shimizu K, Kronenberg M, Steinman RM: Prolonged IFN-γ-producing NKT response induced withα-galactosylceramide-loaded DCs. Nat Immunol 2002;3: 867–874.

    Article  PubMed  CAS  Google Scholar 

  34. Hammond KJ, Pellicci DG, Poulton LD, et al.: CD1d-restricted NKT cells: an interstrain comparison. J Immunol 2001;167:1164–1173.

    PubMed  CAS  Google Scholar 

  35. Matsuda JL, Naidenko OV, Gapin L, et al.: Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 2000;192:741–754.

    Article  PubMed  CAS  Google Scholar 

  36. Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A: In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 2000;191:1895–1903.

    Article  PubMed  CAS  Google Scholar 

  37. Stanic AK, De Silva AD, Park JJ, et al.: Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by β-D-glucosylceramide synthase deficiency. Proc Natl Acad Sci USA 2003;100:1849–1854.

    Article  PubMed  CAS  Google Scholar 

  38. Wilson MT, Johansson C, Olivares-Villagomez D, et al.: The response of natural killer Tcells to glycolipid antigens is characterized by surface receptor downmodulation and expansion. Proc Natl Acad Sci USA 2003; 100:10913–10918.

    Article  PubMed  CAS  Google Scholar 

  39. Schonrich G, Kalinke U, Momburg F, et al.: Downregulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 1991;65:293–304.

    Article  PubMed  CAS  Google Scholar 

  40. Liu H, Rhodes M, Wiest DL, Vignali DA: On the dynamics of TCR: CD3 complex cell surface expression and downmodulation. Immunity 2000;13:665–675.

    Article  PubMed  CAS  Google Scholar 

  41. Chen H, Huang H, Paul WE: NK1.1+ CD4+ T cells lose NK1.1 expression upon in vitro activation. J Immunol 1997;158:5112–5119.

    PubMed  CAS  Google Scholar 

  42. Yang J-Q, Saxena V, Xu H, Van Kaer L, Wang CR, Singh RR: Repeated α-galactosylceramide administration results in expansion of V α14 NKT cells and alleviates inflammatory dermatitis in MRL lpr/lpr mice. J Immunol 2003;171:4439–4460.

    PubMed  CAS  Google Scholar 

  43. Crowe NY, Uldrich AP, Kyparissoudis K, et al.: Glycolipid antigen drives rapid expansion and sustained cytokine production by NKT cells. J Immunol 2003:171:4020–4027.

    PubMed  CAS  Google Scholar 

  44. Kirby AC, Yrlid U, Wick MJ: The innate immune response differs in primary and secondary Salmonella infection. J Immunol 2002;169:4450–4459.

    PubMed  CAS  Google Scholar 

  45. Emoto M, Emoto Y, Kaufmann SH: Interleukin-4-producing CD4+ NK1.1+ TCR α/β intermediate liver lymphocytes are down-regulated by Listeria monocytogenes. Eur J Immunol 1995;25:3321–3325

    Article  PubMed  CAS  Google Scholar 

  46. Hobbs JA, Cho S, Roberts TJ, et al.: Selective loss of natural killer T cells by apoptosis following infection with lymphocytic choriomeningitis virus. J Virol 2001;75:10746–10754.

    Article  PubMed  CAS  Google Scholar 

  47. Kitamura H, Iwakabe K, Yahata T, et al.: The natural killer T (NKT) cell ligandα-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 1999;189:1121–1128.

    Article  PubMed  CAS  Google Scholar 

  48. Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM: Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and there by acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 2003;198:267–279.

    Article  PubMed  CAS  Google Scholar 

  49. Carnaud C, Lee D, Donnars O, et al.: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999;163:4647–4650.

    PubMed  CAS  Google Scholar 

  50. Atkinson MA, Leiter EH: The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999; 5:601–604.

    Article  PubMed  CAS  Google Scholar 

  51. Bach JF, Chatenoud L: Tolerance to islet autoantigens in type 1 diabetes. Annu Rev Immunol 2001;19:131–161.

    Article  PubMed  CAS  Google Scholar 

  52. Hong S, Wilson MT, Serizawa I, et al.: The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 2001;7:1052–1056.

    Article  PubMed  CAS  Google Scholar 

  53. Gombert JM, Herbelin A, Tancrede-Bohin E, Dy M, Carnaud C, Bach JF: Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 1996;26:2989–2998.

    Article  PubMed  CAS  Google Scholar 

  54. Hammond KJL, Poulton LD, Palmisano LJ, Silveira PA, Godfrey DI, Baxter AG: α/β-T cell receptor (TCR)+CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 1998;187:1047–1056.

    Article  PubMed  CAS  Google Scholar 

  55. Laloux V, Beaudoin L, Jeske D, Camaud C, Lehuen A: NK T cell-induced protection against diabetes in Vα14-Jα281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen. J Immunol 2001;166:3749–3756.

    PubMed  CAS  Google Scholar 

  56. Wang B, Geng YB, Wang CR: CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J Exp Med 2001;194:313–320.

    Article  PubMed  Google Scholar 

  57. Sharif S, Arreaza GA, Zucker P, et al.: Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat Med 2001;7:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  58. Naumov YN, Bahjat KS, Gausling R, et al.: Activation of CD 1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 2001;98:13838–13843.

    Article  PubMed  CAS  Google Scholar 

  59. Steinman L: Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 1999;24:511–514.

    Article  PubMed  CAS  Google Scholar 

  60. Pearson CI, McDevitt HO: Redirecting Th1 and Th2 responses in autoimmune disease. Curr Top Microbiol Immunol 1999;238:79–122.

    PubMed  CAS  Google Scholar 

  61. Owens T, Wekerle H, Antel J: Genetic models for CNS inflammation. Nat Med 2001;7:161–166.

    Article  PubMed  CAS  Google Scholar 

  62. Singh AK, Wilson MT, Hong S, et al.: Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 2001;194: 1801–1811.

    Article  PubMed  CAS  Google Scholar 

  63. Yoshimoto T, Bendelac A, Hu-Li J, Paul WE: Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+T cells that promptly produce interleukin 4. Proc Natl Acad Sci USA 1995;92:11931–11934.

    Article  PubMed  CAS  Google Scholar 

  64. Jahng AW, Maricic I, Pedersen B, et al.: Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 2001; 194:1789–1799.

    Article  PubMed  CAS  Google Scholar 

  65. Miyamoto K, Miyake S, Yamamura T: A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001;413:531–534.

    Article  PubMed  CAS  Google Scholar 

  66. Furlan R, Bergami A, Cantarella D, et al.: Activation of invariant NKT cells by α-GalCer administration protects mice from MOG35-55 induced EAE: critical roles for administration route and IFN-γ. Eur J Immunol 2003; 33:1830–1838.

    Article  PubMed  CAS  Google Scholar 

  67. Brossay L, Chioda M, Burdin N, et al.: CD1d-mediated recognition of an α-galactosyl ceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 1998;188:1521–1528.

    Article  PubMed  CAS  Google Scholar 

  68. Spada FM, Koezuka Y, Porcelli SA: CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998;188:1529–1534.

    Article  PubMed  CAS  Google Scholar 

  69. Motsinger A, Azimzadeh A, Stanic AK, et al.: Identification and simian immunodeficiency virus infection of CD1d-restricted macaque natural killer T cells. J Virol 2003;77:8153–8158.

    Article  PubMed  CAS  Google Scholar 

  70. Osman Y, Kawamura T, Naito T, et al.: Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosyl ceramide. Eur J Immunol 2000;30:1919–1928.

    Article  PubMed  CAS  Google Scholar 

  71. Giaccone G, Punt CJA, Ando Y, et al.: A phase I study of natural killer T-cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 2002;8:3702–3709.

    PubMed  CAS  Google Scholar 

  72. Emoto M, Kaufmann SH: Liver NKT cells; an account of heterogeneity. Trends Immunol 2003;24:364–369.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Van Kaer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Kaer, L. Regulation of immune responses by CD1d-restricted natural killer T cells. Immunol Res 30, 139–153 (2004). https://doi.org/10.1385/IR:30:2:139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:30:2:139

Key Words

Navigation