Skip to main content
Log in

Intestinal epithelial cell regulation of mucosal inflammation

  • Immunology at Emory University
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The intestinal epithelium serves as one of human's primary interfaces with the outside world. This interface is very heavily colonized with bacteria and yet permits absorption of life-sustaining nutrients while protecting the tissues below from microbial on slaught. Although the gut epithelium had been classically thought to achieve this function primarily by functioning as a passive, albeit highly selective, barrier, research over the last decade has demonstrated that in fact the epithelium plays a very active role in protecting the host from the bacteria that colonize it. As a consequence of its mediation of mucosal immunity, intestinal epithelial dysfunction appears to be central to diseases associated with aberrant gut mucosal immune responses such as inflammatory bowel disease (IBD). This article reviews: (1) how the gut epithelium participates in regulating innate immune inflammatory responses to enteric pathogens, (2) how these responses may regulate the adaptive immune system, (3) mechanisms that may resolve acute inflammation and (4) how epithelial dysfunction may participate in regulating both the active and chronic phases of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takeuchi A: Electron microscope studies of experimental Salmonella infection. Am J Pathol 1967;50:109–119.

    PubMed  CAS  Google Scholar 

  2. Gewirtz AT, Reed KA, Merlin D, Neish AS, Madara JL: Modeling Microbial-epithelial interactions in the intestine. Methods Microbiol 2002;31:377–396.

    CAS  Google Scholar 

  3. McCormick BA, Colgan SP, Archer CD, Miller SI, Madara JL: Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol 1993;123:895–907.

    Article  PubMed  CAS  Google Scholar 

  4. Hooper LV, Bry L, Falk PG, Gordon JI: Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 1998;20:336–343.

    Article  PubMed  CAS  Google Scholar 

  5. Madara JL, Parkos CA, Nusrat A, Atisook K, Kaoutzani P: The movement of solutes across tight junctions. NY Acad Sci 1992;664:47–60.

    Article  CAS  Google Scholar 

  6. Mallow EB, Harris A, Salzman N, Russell JP, DeBerardinis RJ, Ruchelli E, Bevins CL: Human enteric defensins. Gene structure and developmental expression. J Biol Chem 1996;271:4038–4045.

    Article  PubMed  CAS  Google Scholar 

  7. Dickinson BL, Badizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE, et al.: Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 1999;104:903–911.

    PubMed  CAS  Google Scholar 

  8. Keates S, Keates AC, Mizoguchi E, Bhan A, Kelly CP: Entenocytes are the primary source of the chemokine ENA-78 in normal colon and ulcerative colitis. Am J Physiol 1997;273:G75-G82.

    PubMed  CAS  Google Scholar 

  9. Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, Morzycka-Wroblewska E, Kagnoff MF: A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 1995;95:55–65.

    PubMed  CAS  Google Scholar 

  10. McCormick BA, Parkos CA, Colgan SP, Carnes DK, Madara JL: Apical secretion of a pathogen-elicited epithelial chemoattractant (PEEC) activity in response to surface colonization of intestinal epithelia by Salmonella typhimurium. J Immunol 1998;160:455–456.

    PubMed  CAS  Google Scholar 

  11. Medzhitov R, Janeway CA Jr.: Decoding the patterns of self and nonself by the innate immune system. Science 2002;296:298–300.

    Article  PubMed  CAS  Google Scholar 

  12. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ: Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 1999;274:17406–17409.

    Article  PubMed  CAS  Google Scholar 

  13. Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, et al.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  14. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al.: The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410:1099–1103.

    Article  PubMed  CAS  Google Scholar 

  15. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL: Cutting edge: bacterial flagellin activates basolaterally expressed tlr5 to induce epithelial proinflammatory gene expression. J Immunol 2001;167:1882–1885.

    PubMed  CAS  Google Scholar 

  16. Bauer S, Kirschning CJ, Hacker H, Redecke, V, Hausmann S, Akira S, et al.: Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001;98:9237–9242.

    Article  PubMed  CAS  Google Scholar 

  17. Lee CA: Pathogenicity islands and the evolution of bacterial pathogens. Infect Agents Dis 1996;5:1–7.

    PubMed  CAS  Google Scholar 

  18. Maurelli AT, Fernandez RE, Bloch CA, Rode CK, Fasano A: “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and entero invasive Escherichia coli. Proc Natl Acad Sci USA 1998;95:3943–3948.

    Article  PubMed  CAS  Google Scholar 

  19. Gewirtz AT, Simon PO Jr, Schmitt CK, Taylor LJ, Hagedorn CH, O'Brien AD, et al.: Salmonella typhimurium translocates flagellin across intestinal epithelia inducing a proinflammatory response. J Clin Invest 2001;107:99–109.

    PubMed  CAS  Google Scholar 

  20. Eaves-Pyles T, Murthy K, Liaudet L, Virag L, Ross G, Soriano FG, et al.: Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: I kappa B alpha degradation, induction of nitric oxide synthase, induction of pro-inflammatory mediators, and cardiovascular dysfunction. J Immunol 2001;166:1248–1260.

    PubMed  CAS  Google Scholar 

  21. Sierro F, Dubois B, Coste A, Kaiserlian D, Kraehenbuhl JP, Sirard JC: Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc Natl Acad Sci USA 2001;98: 13722–13727.

    Article  PubMed  CAS  Google Scholar 

  22. Eaves-Pyles TD, Wong HR, Odoms K, Pyles RB: Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J Immunol 2001;167:7009–7016.

    PubMed  CAS  Google Scholar 

  23. Gewirtz AT: Intestinal epithelial toll-like receptors: to protect. And serve?. Curr Pham Des 2003;9:1–5.

    Article  CAS  Google Scholar 

  24. Kopp E, Ghosh S: Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 1994;265:956–959.

    Article  PubMed  CAS  Google Scholar 

  25. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M: A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 1997;388: 548–554.

    Article  PubMed  CAS  Google Scholar 

  26. Zhou D, Chen LM, Hernandez L, Shears SB, Galan JE: A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 2001;39:248–259.

    Article  PubMed  CAS  Google Scholar 

  27. Hobbie S, Chen L, Davis R, Galan J: Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium incultured intestinal epithelial cells. J Immunol 1997;159:5550–5559.

    PubMed  CAS  Google Scholar 

  28. Galan JE: Interactions of Salmonella with host cells: encounters of the closest kind. Proc Natl Acad Sci USA 1998;95:14006–14008.

    Article  PubMed  CAS  Google Scholar 

  29. Kenny B, DeVinrey R, Stein M, Reinscheid DJ, Frey EA, Finlay BB: Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 1997;91:511–520.

    Article  PubMed  CAS  Google Scholar 

  30. Girardin SE, Tournebize R, Mavris M, Page AL, Li X, Stark GR, et al.: CARD4/Nodl mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep 2001;2:736–742.

    Article  PubMed  CAS  Google Scholar 

  31. Mounier J, Vasselon T, Hellio R, Lesourd M, Sansonetti PJ: Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole. Infect Immun 1992;60:237–248.

    PubMed  CAS  Google Scholar 

  32. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pon SF, Crespo J, et al.: Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J Biol Chem 2003;278:5509–5512.

    Article  PubMed  CAS  Google Scholar 

  33. Yu Y, Zeng H, Lyons S, Carlson A, Merlin D, Neish AS, Gewirtz AT: TLR5-mediated activation of p38 MAPK regulates IL-8 expression via a post-transcriptional mechanism. Am J Physiol 2003;285:G282-G290.

    CAS  Google Scholar 

  34. Nash S, Parkos CA, Nusrat A, Delp C, Madara JL: In vitro model of intestinal crypt abcess: A novel neutrophil-derived secretagogue activity. J Clin Invest 1991;87: 1474–1477.

    PubMed  CAS  Google Scholar 

  35. Madara JL, Patapoff TW, Gillece-Castro B, Colgan SP, Parkos CA, Delp C, Mrsny RJ: 5-Adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cells. J Clin Invest 1993;91:2320–2325.

    PubMed  CAS  Google Scholar 

  36. Strohmeier GR, Lencer WI, Patapoff TW, Thompson LF, Carlson SL, Moe SJ, et al.: Surface expression, polarization, and functional significance of CD73 in human intestinal epithelia. J Clin Invest 1997;99; 2588–2601.

    PubMed  CAS  Google Scholar 

  37. Strolmeier GR, Reppert SM, Lencer WI, Madara JL: The A2b adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia. J Biol Chem 1995;270:2387–2394.

    Article  Google Scholar 

  38. Sitaraman SV, Si-Tahar M, Merlin D, Strohmeier GR, Madara JL: Polarity of A2b adenosine receptor expression determines characteristics of receptor desensitization. Am J Physiol Cell Physiol 2000;278: C1230–1236.

    PubMed  CAS  Google Scholar 

  39. Lemon PF, Taylor CT, Stahl GL, Colgan SP: Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. J Exp Med 1998;188:1433–1443.

    Article  Google Scholar 

  40. Narravula S, Lennon PF, Mueller BU, Colgan SP: Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function. J Immunol 2000;165:5262–5268.

    PubMed  CAS  Google Scholar 

  41. Link AA, Kino T, Worth JA, McGuire JL, Crane ML, Chrousos GP, et al.: Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. J Immunol 2000;164:436–442.

    PubMed  CAS  Google Scholar 

  42. Sitaraman SV, Merlin D, Wang L, Wong M, Gewirtz AT, Si-Tahar M, Madara JL: Neutrophil-epithelial crosstalk at the intestinal lumenal surface mediated by reciprocal secretion of adenosine and IL-6. J Clin Invest 2001;107; 861–869.

    PubMed  CAS  Google Scholar 

  43. Revan S, Montesinos MC, Naime D, Landau S, Cronstein BN: Adenosine A2 receptor occupancy regulates stimulated neutrophil function via activation of a serine/threonine protein phosphatase. J Biol Chem 1996;271:17114–17118.

    Article  PubMed  CAS  Google Scholar 

  44. Cronstein BN: A novel approach to the development of anti-inflammatory agents: adenosine release at inflamed sites. J Invest Med 1995;43:50–57.

    CAS  Google Scholar 

  45. Nash S, Stafford J, Madara JL: Effects of polymorphonuclear leukocyte transmigration on barrier function of cultured intestinal epithelial monolayers. J Clin Invest 1987;80:1104–1113.

    PubMed  CAS  Google Scholar 

  46. Sansonetti PJ: Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella making sense of prokaryote-eukaryote cross-talks. FEMS Microbiol Rev 2001;25:3–14.

    PubMed  CAS  Google Scholar 

  47. McCormick BA, Nusrat A, Parkos CA, D'Andrea L, Hofman PM, Carnes D, et al.: Unmasking of intestinal epithelial lateral membrane betal integrin consequent to transepithelial neutrophil migration in vitro facilitates invmediated invasion by Yersinia pseudotuberculosis. Infect Immun 1997;65:1414–1421.

    PubMed  CAS  Google Scholar 

  48. Schreiber S, Nikolaus S, Hampe J: Activation of nuclear factor kappa B inflammatory bowel disease. Gut 1998;42:477–484.

    Article  PubMed  CAS  Google Scholar 

  49. Jobin C, Sartor RB: NF-kappaB signaling proteins as therapeutic targets for inflammatory bowel diseases. Inflamm Bowel Dis 2000;6:206–213.

    Article  PubMed  CAS  Google Scholar 

  50. Rask-Madsen J, Hammersgaard EA, Knudsen E: Rectal electrolyte transport and mucosal permeability in ulcerative colitis and Crohn's disease. J Lab Clin Med 1973;81:342–353.

    PubMed  CAS  Google Scholar 

  51. Strober W, James SP: The immunologic basis of inflammatory bowel disease. J Clin Immunol 1986;6:415–432.

    Article  PubMed  CAS  Google Scholar 

  52. Hollander D: Intestinal permeability, leaky gut, and intestinal disorders. Curr Gastroenterol Rep 1999;1:410–416.

    Article  PubMed  CAS  Google Scholar 

  53. Cooper HS, Murthy SN, Shah RS, Sedergran DJ: Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993;69:238–249.

    PubMed  CAS  Google Scholar 

  54. Maggio-Price L, Shows D, Waggie K, Burich A, Zeng W, Escobar S, Morrissey P, Viney JL: Helicobacter bilis infection accelerates and H. hepaticus infection delays the development of colitis in multiple drug resistance-deficient (mdrla−/−) mice. Am J Pathol 2002;160: 739–751.

    PubMed  CAS  Google Scholar 

  55. Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME, Karmali V, et al.: Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination [see comments] Science 2000;289:1560–1563.

    Article  PubMed  CAS  Google Scholar 

  56. Wang P, Wu P, Siegel MI, Egan RW, Billah MM: Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 1995;270:9558–9563.

    Article  PubMed  CAS  Google Scholar 

  57. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W: Interleukin-10-deficient mice develop chronic enterocolitis [see comments], Cell. 1993;75:263–274.

    Article  PubMed  CAS  Google Scholar 

  58. Gewirtz AT, McCormick B, Neish AS, Petasis NA, Gronert K, Serhan CN, Madara JL: Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. J Clin Invest 1998;101: 1860–1869.

    Article  PubMed  CAS  Google Scholar 

  59. Gronert KG, Gewirtz AT, Madara JL, Serhan CN: Identification of a human enterocyte lipoxin A4 receptor that is regulated by IL-13, and INF-γ that inhibits TNF-α-induced IL-8 release. J Exp Med 1998;187:1285–1294.

    Article  PubMed  CAS  Google Scholar 

  60. Gewirtz AT, Collier-Hyams LS, Young AN, Kucharzik T, Guilford WJ, Parkinson JF, et al.: Lipoxin a(4) analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J Immunol 2002; 168:5260–5267.

    PubMed  CAS  Google Scholar 

  61. Gewirtz AT, Fokin VV, Petasis NA, Serhan CN, Madara JL: LXA4, aspirin-triggered 15-epi-LXA4, and their analogs selectively down regulate PMN azurophilic degranulation. Am J Physiol 1999;276:C988-C994.

    PubMed  CAS  Google Scholar 

  62. Serhan CN Lipoxins and novel aspirin-triggered 15-epilipoxins (ATL): A jungle of cell-cell interactions or a therapeutic apportumity. Prostaglandins 1997;53: 107–137.

    Article  PubMed  CAS  Google Scholar 

  63. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR: Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages J Immunol 2000; 164:1663–1667.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Sitaraman, S. & Gewirtz, A.T. Intestinal epithelial cell regulation of mucosal inflammation. Immunol Res 29, 55–67 (2004). https://doi.org/10.1385/IR:29:1-3:055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IR:29:1-3:055

Key words

Navigation