Skip to main content
Log in

A leaf-peroxisomal protein, hydroxypyruvate reductase, is produced by light-regulated alternative splicing

  • Part II Metabolic Functions
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Hydroxypyruvate reductase (HPR) is localized in leaf peroxisomes in plants, and it plays an important role in the glycolate pathway of photorespiration. In this laboratory, two highly homologous cDNAs for pumpkin HPR (HPR1 and HPR2) have been obtained, and appear to be produced from the same primary transcript by alternative splicing. Analyses at the mRNA level showed that the amounts of the two HPR mRNAs is changed in response to light, suggesting that light changes the splicing pattern of HRP pre-mRNA from almost equal amounts of two HPR mRNAs to greater production of HPR2 mRNA. From the sequences of the two HPR cDNAs, the HPR1 protein, but not the HPR2 protein, was found to have a targeting sequence into peroxisomes at the carboxy terminus. Analyses of transgenic Arabidopsis thaliana expressing fusion proteins with green fluorescent protein confirmed the different subcellular localizations of the two HPR proteins. These findings indicate the presence of light-regulated alternative splicing of HPR pre-mRNA, which controls the subcellular localizations of two HPR proteins in pumpkin cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith, C. W. J., Patton, J. G., and Nadal-Ginard, B. (1989) Alternative splicing in the control of gene expression. Annu. Rev. Genet. 23, 527–577.

    Article  CAS  Google Scholar 

  2. McKeown, M. (1992) Alternative mRNA splicing. Annu. Rev. Cell Biol. 8, 133–155.

    Article  CAS  Google Scholar 

  3. Golovkin, M. and Reddy, A. S. N. (1996) Structure and expression of a plant U1 snRNP 70K gene: alternative splicing of U1 snRNP 70K pre-mRNAs produces two different transcripts. Plant Cell 8, 1421–1435.

    Article  CAS  Google Scholar 

  4. Görlach, J., Raesecke, H.-R., Abel, G., Wehrli, R., Amrhein, N., and Schmid, J. (1995) Organ-specific differences in the ratio of alternatively spliced chrismate synthase (LeCS2) transcripts in tomato. Plant J. 8, 451–456.

    Article  Google Scholar 

  5. Hayashi, M., Tsugeki, R., Kondo, M., Mori, H., and Nishimura, M. (1996) Pumpkin hydroxypyruvate reductases with and without a putative C-terminal signal for targeting to microbodies may be produced by alternative splicing. Plant Mol. Biol. 30, 183–189.

    Article  CAS  Google Scholar 

  6. Kopriva, S., Chu, C.-C., and Bauwe, H. (1996) H-protein of the glycine cleavage system in Flaveria: alternative splicing of the pre-mRNA occurs exclusively in advanced C4 species of the genus. Plant J. 10, 369–373.

    Article  CAS  Google Scholar 

  7. Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., et al. (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737–745.

    Article  CAS  Google Scholar 

  8. Mano, S., Yamaguchi, K., Hayashi, M., and Nishimura, M. (1997) Stromal and thylakoidbound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Lett. 413, 21–26.

    Article  CAS  Google Scholar 

  9. Tamaoki, M., Tsugawa, H., Minami, E., Kayano, T., Yamamoto, N., Kano-Murakami, Y., and Matsuoka, M. (1995) Alternative RNA products from a rice homeobox gene. Plant J. 7, 927–938.

    Article  CAS  Google Scholar 

  10. Ishikawa, T., Yoshimura, K., Tamoi, M., Takeda, T., and Shigeoka, S. (1997) Alternative mRNA splicing of 3′-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts. Biochem. J. 328, 795–800.

    Article  CAS  Google Scholar 

  11. Beevers, H. (1979) Microbodies in higher plants. Annu. Rev. Plant. Physiol. 30, 159–193.

    Article  CAS  Google Scholar 

  12. Titus, D. E. and Becker, W. M. (1985) Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyleldons using double-labed immunoelectron microscopy. J. Cell. Biol. 101, 1288–1299.

    Article  CAS  Google Scholar 

  13. Nishimura, M., Takeuchi, Y., Bellis, L. D., and Hara-Nishimura, I. (1993) Leaf peroxisomes are directly transformed to glyoxysomes during senescence of pumpkin cotyledons. Protoplasma 175, 131–137.

    Article  Google Scholar 

  14. De Bellis, L. and Nishimura, M. (1991) Development of enzymes of the glyoxylate cycle during senescence of pumpkin cotyledons. Plant Cell Physiol. 32, 555–561.

    Google Scholar 

  15. Tolbert, N. E., Oeser, A., Kisaki, T., Hageman, R. H., and Yamazaki, R. K. (1968) Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J. Biol. Chem. 243, 5179–5184.

    CAS  PubMed  Google Scholar 

  16. Mano, S., Hayashi, M., Kondo, M., and Nishimura, M. (1997) Hydroxypyruvate reductase with a carboxy-terminal targeting signal to microbodies is expressed in Arabidopsis. Plant Cell Physiol. 38, 449–455.

    Article  CAS  Google Scholar 

  17. Greenler, J. M., Sloan, J. S., Schwartz, B. W., and Becker, W. M. (1989) Isolation, characterization and sequence analysis of a full-length cDNA clone encoding NADH-dependent hydroxypyruvate reductase from cucumber. Plant Mol. Biol. 13, 139–150.

    Article  CAS  Google Scholar 

  18. Mano, S., Hayashi, M. and Nishimura, M. (1999) Light regulates alternative splicing of hydroxypyruvate reductase in pumpkin. Plant J. 17, 309–320.

    Article  CAS  Google Scholar 

  19. Tsugeki, R., Hara-Nishimura, I., Mori, H., and Nishimura, M. (1993) Cloning and sequencing of cDNA for glycolate oxidase from pumpkin cotyledons and Northern blot analysis. Plant Cell Physiol. 34, 51–57.

    CAS  PubMed  Google Scholar 

  20. Mano, S., Hayashi, M., Kondo, M., and Nishimura, M. (1996) cDNA cloning and expression of a gene for isocitrate lyase in pumpkin cotyledons. Plant Cell Physiol. 37, 941–948.

    Article  CAS  Google Scholar 

  21. Gould, S. J., Keller, G.-A., and Subramani, S. (1988) Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J. Cell. Biol. 107, 897–905.

    Article  CAS  Google Scholar 

  22. Gould, S. J., Keller, G.-A., Hosken, N., Wilkinson, J., and Subramani, S. (1989) A conserved tripeptide sorts proteins to peroxisomes. J. Cell. Biol. 108, 1657–1664.

    Article  CAS  Google Scholar 

  23. Hayashi, M., Aoki, M., Kondo, M., and Nishimura, M. (1997) Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxy-terminal tripeptide. Plant Cell Physiol. 38, 759–768.

    Article  CAS  Google Scholar 

  24. Baker, B. S. (1989) Sex in flies: the splice of life. Nature 340, 521–524.

    Article  CAS  Google Scholar 

  25. Inoue, K., Hoshijima, K., Sakamoto, H., and Shimura, Y. (1990) Binding of the Drosophila Sex-lethal gene product to the alternative splice site of transformer primary transcript. Nature 344, 461–463.

    Article  CAS  Google Scholar 

  26. Inoue, K., Hoshijima, K., Higuchi, I., Sakamoto, H., and Shimura, Y. (1992) Binding of the Drosophila transformer and transformer-2 proteins to the rgulatory elements of doublesex primary transcript for sex-specific RNA processing. Proc. Natl. Acad. Sci. USA 89, 8092–8096.

    Article  CAS  Google Scholar 

  27. Nagoshi, R. N., Mckeown, M., Burtis, K. C., Belote, J. M., and Baker, B. S. (1988) The control of alternative splicing at genes regulating sexual differentiation in D. melanogaster. Cell 53, 229–236.

    Article  CAS  Google Scholar 

  28. Huang, S. and Spector, D. L. (1996) Introndpendent recruitment pre-mRNA splicing factors to sites of transcription. J. Cell. Biol. 133, 719–732.

    Article  CAS  Google Scholar 

  29. Gontarek, R. R. and Derse, D. (1996) Interactions among SR proteins, an exonic splicing enhancer and a Lentivirus Rev protein regulate alternative splicing. Mol. Cell Biol. 16, 2325–2331.

    Article  CAS  Google Scholar 

  30. Yeakley, J. M., Morfin, J.-P., Rosenfeld, M. G., and Fu, X.-D. (1996) A complex of nuclear proteins mediates SR protein binding to a purine-rich splicing enhancer. Proc. Natl. Acad. Sci. USA 93, 7582–7587.

    Article  CAS  Google Scholar 

  31. Screaton, G. R., Cáceres, J. F., Mayeda, A., Bell, M. V., Plebanski, M., Jackson, D. G., Bell, J. I., and Krainer, A. R. (1995) Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J. 14, 4336–4349.

    Article  CAS  Google Scholar 

  32. Valcárcel, J. and Green, M. R. (1996) The SR protein family: pleiotropic functions in pre-mRNA splicing. Trends Biochem. Sci. 21, 296–301.

    Article  Google Scholar 

  33. Tacke, R., Chen, Y., and Manley, J. L. (1997) Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA 94, 1148–1153.

    Article  CAS  Google Scholar 

  34. Chandler, S. D., Mayeda, A., Yeakley, J. M., Krainer, A. R., and Fu, X.-D. (1996) RNA splicing specificity determined by the coordinated action of RNA recognition motif in SR proteins. Proc. Natl. Acad. Sci. USA 94, 3596–3601.

    Article  Google Scholar 

  35. Zahler, A. M., Lane, W. S., Stolk, J. A., and Roth, M. B. (1992) SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6, 837–847.

    Article  CAS  Google Scholar 

  36. Lopato, S., Mayeda, A., Krainer, A. R. and Barta, A. (1996) Pre-mRNA splicing in plants: characterization of Ser/Arg splicing factors. Proc. Natl. Acad. Sci. USA 93, 3074–9079.

    Article  CAS  Google Scholar 

  37. Jumaa, H. and Nielsen, P. J. (1997) The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J. 16, 5077–5085.

    Article  CAS  Google Scholar 

  38. Lazar, G., Schaal, T., Maniatis, T., and Goodman, H. M. (1995) Identification of a plant serine-arginine-rich protein similar to the mammalian splicing factor SF2/ASF. Proc. Natl. Acad. Sci. USA 92, 7672–7676.

    Article  CAS  Google Scholar 

  39. Lopato, S., Waigmann, E., and Barta, A. (1996) Characterization of a novel arginine serinerich splicing factor in Arabidopsis. Plant Cell 8, 2255–2264.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Nishimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mano, S., Hayashi, M. & Nishimura, M. A leaf-peroxisomal protein, hydroxypyruvate reductase, is produced by light-regulated alternative splicing. Cell Biochem Biophys 32, 147–154 (2000). https://doi.org/10.1385/CBB:32:1-3:147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:32:1-3:147

Index Entries

Navigation