Skip to main content
Log in

Accumulation of aluminum in rat brain

Does it lead to behavioral and electrophysiological changes?

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study was undertaken to examine possible aluminum (Al) accumulation in the brain of rats and to investigate whether subchronic exposure to the metal leads to behavioral and neurophysiological changes in both treated and control groups. Each of the groups consisted of 10 animals. Aluminum chloride (AlCl3) at a low (50 mg/kg/d) or high (200 mg/kg/d) dose was applied to male Wistar rats by gavage for 8 wk. Al-free water by gavage was given to the control group throughout the experiment. Behavioral effects were evaluated by open-field (OF) motor activity and by acoustic startle response (ASR). Electrophysiological examination was done by recording spontaneous activity and sensory-evoked potentials from the visual, somatosensory, as well as auditory cortex. The Al content of each whole brain was determined by electrothermal atomic absorption spectrophotometry. Subchronic Al exposure slightly caused some changes in the evoked potentials and electrocorticograms and in the OF and ASR performance, but these results were not statistically significant. The brain Al levels of the control and the low and high dose of Al-exposed groups were measured as 0.717±0.208 µg/g (wet weight), 0.963±0.491 µg/g (wet weight) and 1.816±1.157 µg/g (wet weight), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. O. Ganrot, Metabolism and possible health-effects of aluminium, Environ. Health Perspect. 65, 363–441 (1986).

    Article  PubMed  CAS  Google Scholar 

  2. R. Massey and D. Taylor, Aluminium in Food and the Environment, Special Publication No. 73, Royal Society of Chemiistry, London (1988).

    Google Scholar 

  3. IPCS, Environmental Health Criteria 194, Aluminium, WHO, Geneva (1997).

    Google Scholar 

  4. K. A. Winship, Toxicity of aluminium: a historical review, Part 2, Adv. Drug React. Toxical Rev. 12, 177–211 (1993).

    CAS  Google Scholar 

  5. R. J. Boegman and L. A. Bates, Neurotoxicity of aluminum, Can. J. Physiol. Pharmacol. 62, 1010–1014 (1984).

    PubMed  CAS  Google Scholar 

  6. D. R. C. McLachlan, Aluminum and Alzheimer’s disease, Neurobiol. Aging 7, 525–532 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. W. A. Banks and A. J. Kastin, Aluminum-induced neurotoxicity: alterations in membrane function at the blood-brain barrier, Neurosci. Biobehav. Rev. 13, 47–53 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. J. C. Murray, C. M. Tanner, and S. M. Sprague, Aluminum neurotoxicity: a reevaluation, Clin. Neuropharmacol. 14, 179–185 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. R. A. Amstrong, J. Anderson, J. D. Cowburn, et al., Aluminium administered in drinking water but not in the diet influences biopterin metabolism in the rodent, Biol. Chem. Hoppe-Seyler 373, 1075–1078 (1992).

    PubMed  CAS  Google Scholar 

  10. R. T. Erasmus, J. Savory, M. R. Wills, et al., Aluminum neurotoxicity in experimental animals, Ther. Drug Monit. 15, 588–592 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. U. De Boni, A. Otvos, J. W. Scott, et al., Neurofibrillary degeneration induced by systemic aluminum, Acta Neuropath. (Berl.) 35, 285–294 (1976).

    CAS  Google Scholar 

  12. W. A. Banks and A. J. Kastin, Aluminium increases permeability of the blood-brain barrier to labelled dsip and β-endorphin: possible implications for senile and dialysis dementia, Lancet ii, 1227–1229 (1983).

    Article  Google Scholar 

  13. G. Sahin, I. Varol, A. Temizer, et al., Determination of aluminum levels in the kidney, liver, and brain of mice treated with aluminum hydroxide, Biol. Trace Element Res. 41, 129–135 (1994).

    Article  CAS  Google Scholar 

  14. R. L. Commissaris, J. J. Cordon, S. Sprague, et al., Behavioral changes in rats after chronic aluminum and parathyroid hormone administration, Neurobehav. Toxicol. Teratol. 4, 403–410 (1982).

    PubMed  CAS  Google Scholar 

  15. G. Sahin, T. Taskin, K. Benli, et al., Impairment of motor coordination in mice after ingestion of aluminum chloride, Biol. Trace Element Res. 50, 79–85 (1995).

    CAS  Google Scholar 

  16. G. M. Berlyne, R. Yagil, J. Ben Ari, et al., Aluminium toxicity in rats, Lancet i, 564–567 (1972).

    Article  Google Scholar 

  17. A. C. Alfrey, G. R. LeGendre, and W. D. Kaehny, The dialysis encephalopathy syndrome, New Engl. J. Med. 294, 184–188 (1976).

    Article  PubMed  CAS  Google Scholar 

  18. A. I. Arieff, J. D. Cooper, D. Amstrong, et al., Dementia, renal failure, and brain aluminum, Ann. Intern. Med. 90, 741–747 (1979).

    PubMed  CAS  Google Scholar 

  19. I. Dési, Neurological investigation of pesticides in animal experiments, Neurobehav. Toxicol. Teratol. 5, 503–517 (1983).

    PubMed  Google Scholar 

  20. C. Cutrufo, S. Caroli, P. Delle Femmine, et al., Experimental aluminium encephalopathy quantitative EEG analysis of aluminium bioavailability, J. Neurol. Neurosurg. Psychiatry 47, 204–206 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. T. L. Petit, G. B. Biederman, and P. A. McMullan, Neurofibrillary degeneration, dentric dying back, and learning-memory deficits after aluminum administration: implications for brain aging, Exp. Neurol. 67, 152–162 (1980).

    Article  PubMed  CAS  Google Scholar 

  22. V. Bernuzzi, D. Desor, and P. R. Lehr, Effects of prenatal aluminum exposure on neuromotor maturation in the rat, Neurobehav. Toxicol. Teratol. 8, 115–119 (1989).

    Google Scholar 

  23. B. M. Thorne, T. Donohoe, K. Lin, et al., Aluminum ingestion and behavior in the longevans rat, Physiol. Behav. 36, 63–67 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. P. I. Otezia, C. L. Keen, B. Han, et al., Aluminum accumulation and neurotoxicity in Swiss-Webster mice after long-term dietary exposure to aluminum and citrate, Metabolism 42, 1296–1300 (1993).

    Article  Google Scholar 

  25. G. S. Zubenko and I. Hanin, Cholinergic and noradrenergic toxicity of intraventricular aluminum chloride in the rat hippocampus, Brain Res. 498, 381–384 (1989).

    Article  PubMed  CAS  Google Scholar 

  26. S. Gaytan-Garcia, H. Kim, and M. J. Strong, Spinal motor neuron neuroaxonal spheroids in chronic aluminum neurotoxicity contain phosphatase-resistant high molecular weight neurofilament, Toxicology 108, 17–24 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. S. Kumar, Biophasic effects of aluminium on cholinergic enzyme of rat brain, Neurosci. Lett. 248, 121–123 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. J. R. McDermott, A. I. Smith, M. K. Ward, et al., Brain-aluminium concentration in dialysis encephalopathy, Lancet i, 901–904 (1978).

    Article  Google Scholar 

  29. D. R. C. McLachlan, W. J. Lukiw, and T. P. A. Kruck, New evidence for an active role of aluminum in Alzheimer’s disease, Can. J. Neurol. Sci. 16, 490–497 (1989).

    PubMed  CAS  Google Scholar 

  30. G. L. Wenk and K. L. Stemmer, The influence of ingested aluminum upon neorepinephrine and dopamine levels in the rat brain, Neurotoxicology 2, 347–353 (1981).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baydar, T., Papp, A., Aydin, A. et al. Accumulation of aluminum in rat brain. Biol Trace Elem Res 92, 231–244 (2003). https://doi.org/10.1385/BTER:92:3:231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:92:3:231

Index Entries

Navigation