Skip to main content
Log in

Iron depletion without anemia is not associated with impaired selenium status in college-aged women

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iron-deficiency anemia has been shown to alter body mineral concentrations and activities of iron- and non-iron-containing enzymes, especially those with antioxidant functions. These effects, however, have been less studied in nonanemic iron-depleted individuals. Thus, this study assessed indices of selenium status in 12 college-aged females with adequate iron stores and 15 college-aged females with low iron stores before and after iron therapy. Blood samples were drawn at baseline for both groups and following iron supplementation in the low-iron-stores group. Hematocrit, hemoglobin, and serum ferritin concentrations of the low-iron-stores group were significantly lower than those of the control group. The serum transferrin receptor-to-serum ferritin ratio in the low-iron-stores group was significantly greater than that of the control group. Serum selenium and glutathione peroxidase concentrations of the low-iron-stores group were not significantly different from those of the controls. Iron supplementation significantly increased hemoglobin, hematocrit, and serum ferritin concentrations and significantly decreased the serum transferrin receptor concentration and serum transferrin receptor:serum ferritin ratio in the low-iron-stores group posttreatment compared to pretreatment. Serum selenium and glutathione peroxidase concentrations did not differ significantly from pretreatment to posttreatment in the low-iron-stores group. Results of this study indicate that low iron stores without anemia are not associated with impaired selenium status in college-aged females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Fairbanks, Iron in medicine and nutrition, in Modern Nutrition in Health and Disease, 9th ed., M. E. Shils, J. A. Olson, M. Shike, A. C. Ross, eds., Williams & Wilkins, Baltimore, MD, pp. 193–221 (1999).

    Google Scholar 

  2. Food and Nutrition Board. Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, National Academy Press, Washington, DC (2001).

    Google Scholar 

  3. P. Clarkson and E. M. Haymes, Exercise and mineral status of athletes: calcium, magnesium, phosphorus, and iron, Med. Sci. Sports Exerc. 27, 831–843 (1995).

    PubMed  CAS  Google Scholar 

  4. A. C. Looker, P. R. Dallman, M. D. Carroll, et al., Prevalence of iron deficiency in the United States, JAMA 277, 973–976 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. N. S. Scrimshaw, Iron deficiency, Sci. Am. 265, 46–52 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. P. H. Rosenzweig and S. L Volpe, Iron, thermoregulation, and metabolic rate, Crit. Rev. Food Sci. Nutr. 39, 131–148 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. P. R. Dallman, Manifestations of iron deficiency, Semin. Hematol. 19, 19–30 (1982).

    PubMed  CAS  Google Scholar 

  8. C. A. Finch, L. R. Miller, and A. R. Inamdar, Iron deficiency in the rat: physiological and biochemical studies of muscle dysfunction, J. Clin. Invest. 59, 447–453 (1976).

    Google Scholar 

  9. J. Beard, L. J. Connor, and B. C. Jones, Iron in the brain, Nutr. Rev. 51, 151–70 (1993).

    Google Scholar 

  10. B. Lozoff, E. Jimenez, and A. W. Wolf, Long-term developmental outcome of infants with iron deficiency, N. Engl. J. Med. 325, 687–694 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. T. Walter, I. D. Andraca, P. Chadud, et al., Iron deficiency anemia: adverse effects on infant psychomotor development, Pediatrics 84, 7–17 (1989).

    PubMed  CAS  Google Scholar 

  12. D. Brigham and J. Beard, Iron and thermoregulation: a review, Crit. Rev. Food Sci. Nutr. 36, 747–763 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. T. Walter, M. Olivares, F. Pizzaro, et al., Iron, anemia, and infection, Nutr. Rev. 55, 111–124 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. R. M. Lyle, C. Weaver, D. A. Sedlock, et al., Iron status in exercising women: the effect of oral iron therapy vs increased consumption of muscle foods, Am. J. Clin. Nutr. 56, 1049–1055 (1992).

    PubMed  CAS  Google Scholar 

  15. A. Ece, B. S. Uyanik, A. Iscan, et al., Increased serum copper and decreased serum zinc levels in children with iron deficiency anemia, Biol. Trace Element Res. 59, 31–39 (1997).

    CAS  Google Scholar 

  16. M. C. Rodriguez-Matas, F. Lisbona, A. E. Gomez-Ayala, et al., Influence of nutritional iron deficiency development on some aspects of iron, copper, and zinc metabolism, Lab. Anim. 32, 298–306 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. A. Shukla, K. N. Agarwal, and G. Shukla, Effect of latent iron deficiency on metal levels of rat brain regions, Biol. Trace Element Res. 22, 141–152 (1989).

    Article  CAS  Google Scholar 

  18. K. Yokoi, M. Kimura, and Y. Itokawa, Effect of dietary iron deficiency on mineral levels in tissues of rats, Biol. Trace Element Res. 29, 257–265 (1991).

    CAS  Google Scholar 

  19. K. Yetgin, H. Hincal, N. Basaran, et al., Serum selenium status in children with iron deficiency anemia, Acta Haematol. 88, 185–188 (1992).

    PubMed  CAS  Google Scholar 

  20. P. M. Moriarty, M. F. Picciano, J. Beard, et al., Classical selenium-dependent glutathione peroxidase expression is decreased secondary to iron deficiency in rats, J. Nutr. 125, 293–301 (1995).

    PubMed  CAS  Google Scholar 

  21. D. H. Holben and A. M. Smith, The diverse role of selenium within selenoproteins: a review, J. Am. Diet. Assoc. 99, 836–843 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. L. G. Macdougall, Red cell metabolism in iron deficiency anemia, J. Pediatr 80, 775–782 (1972).

    Article  PubMed  CAS  Google Scholar 

  23. R. Rodvien, A. Gillum, and L. R. Weintraub, Decreased glutathione peroxidase activity secondary to severe iron deficiency: a possible mechanism responsible for the shortened life span of the iron-deficient red cell, Blood 43, 281–289 (1974).

    PubMed  CAS  Google Scholar 

  24. J. Acharya, N. A. Punchard, J. A. Taylor, et al., Red cell lipid peroxidation and antioxidant enzymes in iron deficiency, Eur. J. Haematol. 47, 287–291 (1991).

    Article  PubMed  CAS  Google Scholar 

  25. Y. H. Lee, D. K. Layman, and R. R. Bell, Glutathione peroxidase activity in iron-deficient rats, J. Nutr. 111, 194–200 (1981).

    PubMed  CAS  Google Scholar 

  26. K. Srigiridhar and K. M. Nair, Iron-deficient intestine is more susceptible to peroxidative damage during iron supplementation in rats, Free Radical Biol. Med. 25, 660–665 (1998).

    Article  CAS  Google Scholar 

  27. S. Yetgin, C. Gonenc, and A. Cigdem, Neutrophil glutathione peroxidase activity in iron deficiency anemia, Scand. J. Haematol. 36, 58–60 (1986).

    Google Scholar 

  28. M. Bartal, D. Mazor, A. Dvilansky, et al., Iron deficiency anemia: recovery from in vitro oxidative stress, Acta Haematol. 90, 94–98 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. S. S. Gropper, D. M. Bader-Crowe, L.S. McAnulty, et al., Non-anemic iron depletion, oral iron supplementation and indices of copper status in college-aged females, J. Am. Coll. Nutr. 21, 1–8 (2002).

    Google Scholar 

  30. J. Malczewska, B. Szczepanska, R. Stupnicki, et al., The assessment of frequency of iron deficiency in athletes from transferrin receptor-ferritin index, Int. J. Sports Nutr. Exerc. Metab. 11, 42–52 (2001).

    CAS  Google Scholar 

  31. J. D. Cook, Defining optimal body iron, Proc. Nutr. Soc. 58, 489–495 (1999).

    PubMed  CAS  Google Scholar 

  32. L. Hallberg, Perspectives on nutritional iron deficiency, Annu. Rev Nutr. 21, 1–21 (2001).

    Article  PubMed  CAS  Google Scholar 

  33. P. Suominen, K. Punnonen, A. Rajamaki, et al., Serum transferrin receptor and transferrin receptor-ferritin index identify healthy subjects with subclinical iron deficits, Blood 92, 2934–2939 (1998).

    PubMed  CAS  Google Scholar 

  34. K. E. Hill, Y. Xia, B. Akesson, et al., Selenoprotein P concentration in the plasma is an index of selenium status in selenium deficient and selenium supplemented Chinese subjects, J. Nutr. 126, 138–145 (1996).

    PubMed  CAS  Google Scholar 

  35. Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids, National Academy Press, Washington DC, pp. 284–324 (2000).

    Google Scholar 

  36. G. Perona, R. Cellerino, G. Guidi, et al., Erythrocyte glutathione peroxidase: its relationship to plasma selenium in man, Scand. J. Haematol. 19, 116–120 (1977).

    Article  PubMed  CAS  Google Scholar 

  37. R. Cellerino, G. Guidi, and G. Perona, Plasma iron and erythrocytic glutathione peroxidase activity, Scand. J. Haemotol. 17, 111–116 (1976).

    CAS  Google Scholar 

  38. C. Flowers, B. S. Skikne, A. Covell, et al., The clinical measurement of serum transferrin receptor, J. Lab. Clin. Med. 114, 368–377 (1989).

    PubMed  CAS  Google Scholar 

  39. B. Ferguson, B. S. Skikne, K. Simpson, et al., Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia, J. Lab. Clin. Med. 19, 385–390 (1992).

    Google Scholar 

  40. B. S. Skikne, C. Flowers, and J. D. Cook, Serum transferrin receptor: a quantitative measure of tissue iron deficiency, Blood 75, 1870–1876 (1990).

    PubMed  CAS  Google Scholar 

  41. K. Punnonen, K. Irjala, and A. Rajamaki, Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency, Blood 89, 1052–1057 (1997).

    PubMed  CAS  Google Scholar 

  42. A. F. Remacha, M. P. Sarda, M. Parellado, et al., The role of serum transferrin receptor in the diagnosis of iron deficiency, Haematologica 83, 963–966 (1998).

    PubMed  CAS  Google Scholar 

  43. Y. I. Zhu and J. D. Haas, Response of serum transferrin receptor to iron supplementation in iron-depleted, nonanemic women, Am. J. Clin. Nutr. 67, 271–275 (1998).

    PubMed  CAS  Google Scholar 

  44. M. Virtanen, L. U. Viinika, and M. K. G Virtanen, Higher concentrations of serum transferrin receptor in children than in adults, Am. J. Clin. Nutr. 69, 256–260 (1999).

    PubMed  CAS  Google Scholar 

  45. Y. I. Zhu and J. D. Haas, Iron depletion without anemia and physical performance in young women, Am. J. Clin. Nutr. 66, 334–341 (1997).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAnulty, L.S., Gropper, S.S., McAnulty, S.R. et al. Iron depletion without anemia is not associated with impaired selenium status in college-aged women. Biol Trace Elem Res 91, 125–136 (2003). https://doi.org/10.1385/BTER:91:2:125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:91:2:125

Index Entries

Navigation