Skip to main content
Log in

Validity of hair mineral testing

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The variance of testing was compared between the College of American Pathologists clinical survey and that of a recent review about hair mineral testing. The review suggested that the accuracy of hair mineral testing was unreliable. In general, there was a greater range of variance in the College of American Pathologists testing results. These latter results are based on laboratory testing and are used as a “yardstick” to determine if a laboratory passes or fails that analyte and are considered a “gold standard.” An extract, which resulted from a method that avoided the washing step, was compared among five laboratories. Very good precision resulted, indicating that the varied washing steps used by the laboratories in a recent review were probably the source of much variance.

Analysis of hair analysis seemed to yield important information in several historical or forensic cases involving Ludwig von Beethoven, Napoleon Bonaparte, ex-US-presidents Zachary Taylor and Andrew Jackson, and Charles Hall, an Arctic explorer.

Several elements that were reviewed, including arsenic, cadmium, cobalt, germanium, lead, lithium, manganese, mercury, nickel, and thallium, showed relationships between body burden, dosage, and exposure or toxicity. Evidence of toxicity could not be found by measuring hair aluminum or vanadium. Chromium, selenium, and zinc seemed to have nutritional value. Ratios of hair elements with clinical importance could not be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Seidel, R. Kruetzer, D. Smith, S. McNee, and D. Gilliss, Assessment of commercial laboratories performing hair mineral analysis, JAMA 285, 67–72 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. S. Barrett, Commercial hair analysis: science or scam? JAMA 254, 1041–1045 (1985).

    Article  PubMed  CAS  Google Scholar 

  3. R. Martin, Beethovens Hair, Random House, New York (2000).

    Google Scholar 

  4. P. F. Corso, J.T. Hindmarsh and F.D. Strizto, The death of Napoleon, Am. J. Forensic Med. Pathol. 21, 300–303 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. B. Weider and J. Fournier, Author’s reply, Am. J. Forensic Med. Pathol. 21, 303–305 (2000).

    Article  Google Scholar 

  6. B. Weider, Authors reply, Sci. Prog. 81, 81–92 (1998).

    PubMed  Google Scholar 

  7. F. K. Paddock, C. C. Loomis, and A. K. Perkons, An inquest on the death of Charles Hall, N. Enge. J. Med. 282, 784–786 (1970).

    Article  CAS  Google Scholar 

  8. L. M. Deppisch, J. A. Centeno, D. Gemmel, and N. L. Torres, Andrew Jackson’s exposure to mercury and lead, JAMA 282, 569–571 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. E. Cernichiari, G. M. Myers, T. W. Clarkson, and B. Weiss, Did Andrew Jackson have mercury poisoning? JAMA 283, 200 (2000).

    Article  PubMed  CAS  Google Scholar 

  10. L. M. DePisch and D. J. Gemmel, Did Andrew Jackson have mercury poisoning? Reply, JAMA 283, 201 (2000).

    Article  Google Scholar 

  11. P. Chappuis, M. de Vernejoul, F. Paolaggi, and F. Rousselet, Relationship between hair, serum and bone and aluminum in hemodialyzed patients, Clini. Chimi. Acta 2(179), 271–278 (1989).

    Article  Google Scholar 

  12. A. Pineau, O. Guillar, F. Huguet, M. Speich, S. Gelot, and H. Boiteau, An evaluation of the biological significance of aluminum in plasma and hair of patients on long-term hemodialysis, Eur. J. Pharmacol. Environ. Toxicol. Pharm. 228, 263–268 (1993).

    Article  CAS  Google Scholar 

  13. M. Wilhelm, J. Passlick, T. Busch, M. Szydlik, and F. K. Ohnesorge, Scalp hair as an indicator of aluminum exposure: comparison to bone and plasma, Hum. Toxicity 8, 5–9 (1989).

    CAS  Google Scholar 

  14. A. Poklis, Chapter 8, Forensic Toxicology, in Introduction to Forensic Sciences, W. G. Eckert ed., CRC Press Inc., Boca Raton, Fla., p. 107–132 (1997).

    Google Scholar 

  15. G. S. Zhuang, Y. S. Yang, M. G. Tan, M. Zhi, W. Q. Pan, and Y. D. Cheng, Preliminary study of the distribution of the toxic elements As, Cd, and Hg in human hair and tissues by RNAA, Biol. Trace Element Res. 27, 729–736 (1990).

    Google Scholar 

  16. T. H. Lin, Y. H. Huang, and M. Y. Wang, Arsenic species in drinking water, hair, fingernails; and urine of patients with Blackfoot disease, J. Toxicol. Environ. Health A 53, 85–93 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. M. A. Armienta, R. Rodriguez, and O. Cruz, Arsenic content in hair of people exposed to natural arsenic polluted groundwater at Zimapan, Mexico, Bull. Environ. Contam. Toxicol. 59, 583–589 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. WHO, Environmental Health Criteria, Volume 18, World Health Organization, Geneva (1981).

    Google Scholar 

  19. J. T. Hindmarsh, O. R. McLetchie, L. P. M. Hefferman, O. A. Hayne, H. A. Ellenberger, R. F. McCurdy, et al., Electromyographic abnormalities in chronic environmental arsenicalism, J. Anal. Toxicol. 1, 270–276 (1977).

    CAS  Google Scholar 

  20. A. Pazirandeh, A. H. Brati, and M. G. Marageh, Determination of arsenic in hair using neutron activation, Appl. Radiat. Isot. 49, 753–759 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. D. Das, A. Chatterjee, B. K. Mandal, G. Samanta, and D. Chakraborti, Arsenic in groud water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale, and liver tissue (biopsy) of the affected people, Analyst 120, 917–924 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. K. A. Bustueva, B. A. Revich, and L. E. Bezpalko, Cadmium in the environment of three Russian cities and in human hair and urine, Arch. Environ Health 49, 284–288 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. N. Frery, F. Girard, T. Moreau, P. Blot, J. Saluquillo, S. Hajem, et al. Validity of hair cadmium in detecting chronic cadmium exposure in general populations, Environ. Contam. Toxicol. 50, 736–743 (1993).

    CAS  Google Scholar 

  24. M. Marlowe, L. Bliss, and H. G. Schneider, Hair trace element content of violence prone male children, J. Adv. Med. 7, 5–18 (1994).

    Google Scholar 

  25. M. Marlowe, C. Moon, J. Errera, and J. Stellern, Hair mineral content as a predictor of mental retardation, Orthomol. Psychiatry 12, 26–33 (1983).

    Google Scholar 

  26. H. L. Needleman, C. Gunnoe, A. Leviton, R. Reed, H. Pereise, and C. Barrett, Deficits in psychologic and classroom performance of children with elevated dentine lead levels, N. Engl. J. Med. 300, 689–695 (1979).

    Article  PubMed  CAS  Google Scholar 

  27. P. O. Phil and F. Ervin, Lead and cadmium levels in violent criminals, Psychol. Rep. 66, 839–844 (1990).

    Article  Google Scholar 

  28. J. Basco, G. Lusztig, A. Pal, and I Uzonyi, Comparative investigation of some mineral elements in the aortic wall and the Ca concentration in the hair, Exp. Pathol. 29, 119–125 (1986).

    Google Scholar 

  29. A. MacPherson and J. Bacso, Relationship of hair concentration to incidence of coronary heart disease, Sci. Total Environ. 25, 11–19 (2000).

    Article  Google Scholar 

  30. A. V. Skalny, R. S. Dadashev, F. I. Slavin, and A. S. Semenov, Ca, Mg, Na, K levels in the hair of alcoholics, Laboratamoe Delo 2, 42–44 (1989).

    Google Scholar 

  31. S. Y. Ng, Hair calcium and magnesium levels in patients with fibromyalgia: a case center study, J. Manipulative Physiol. Ther. 22, 586–593 (1999).

    Article  PubMed  CAS  Google Scholar 

  32. L. Kotowiak, Behavior of selected bio-elements in women with osteoporosis, Ann. Acad. Med. Stetin 43, 225–238 (1997).

    Google Scholar 

  33. A. Ahoroni, B. Tesler, Y. Paltieli, J. Tal, Z. Dori, and M. Sharf, Hair chromium content of women with gestational diabetes compared with nondiabetic pregnant women, Am. J. Clin. Nutr. 55, 104–107 (1992).

    Google Scholar 

  34. S. Davies, J. M. Howard, A. Hunnisett, and M. Howard, Age-related decreases in chromium levels in 51,665 hair, sweat and serum samples from 40,872 patients—implications for the prevention of cardiovascular disease and type II diabetes mellitus, Metabolism 46, 469–473 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. S. Kazi, S. S. Ali, T. G. Kazi, and G. H. Kazi, Chromium: its role in diabetes and concentration in human scalp hair, Am. Clin. Lab. 18, 8 (1999).

    PubMed  CAS  Google Scholar 

  36. K. M. Hambridge and D. O. Rodgerson, Comparisons of hair chromium levels of nulliparous and parous women, Am. J. Obstet. Gynecol. 103, 320–321 (1969).

    Google Scholar 

  37. K. M. Hambridge, D. O. Rodgerson, and D. O’Brien, Concentration of chromium in the hair of normal children and children with juvenile mellitus, Diabetes 17, 517–519 (1968).

    Google Scholar 

  38. J. Q. J. Jarvis, E. Hammond, R. Meier, and C. Robinson, Cobalt cardiomyopathy. A report of two cases from the mineral assay laboratories and a review of the literature, J. Occup. Med. 34, 620–626 (1992).

    PubMed  CAS  Google Scholar 

  39. K. P. Shrestha and A. E. Carrera, Hair trace elements and mental retardation among children, Arch. Environ. Health 43, 396–398 (1998).

    Article  Google Scholar 

  40. T. Suzuki, J. Koizumi, T. Moroji, H. Shiraishi, T. Hari, A. Baba, et al., Effects of long-term anticonvulescent therapy on copper, zinc, and magnesium in hair and serum of epileptics, Biol. Psychiatry 31, 571–581 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. I. D. Capel, M. H. Pinnock, H. M. Darrell, D. C. Williams, and E. C. G. Grant, Comparison of concentrations of some trace, bulk, and toxic metals in hair of normal and dyslexic children, Clin. Chem. 27, 879–881 (1981).

    PubMed  CAS  Google Scholar 

  42. M. Oishi, T. Takasu, M. Tateno, and H. Uchida, Hair trace elements in cerebellar degeneration: low copper levels in late cortical cerebellar atrophy, J. Neurol. 237, 163–165 (1990).

    Article  PubMed  CAS  Google Scholar 

  43. A. Ilhan, E. Uz, S. Kali, A. Var, and O. Akyo, Serum and hair trace element levels in patients with epilepsy and healthy subjects: does the antiepileptic therapy affect the element concentrations of hair, Eur. J. Neurol. 6, 705–709 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. S. K. Taneja, S. Girhotra, and K. P. Singh, Detection of potentially myocardial infarction susceptible individuals in Indian population. A mathematical model based on copper and zinc status, Biol. Trace Element Res. 75, 177–186 (2000).

    Article  CAS  Google Scholar 

  45. L. M. Klevay, Coronary heart disease: the zinc copper hypothesis, Am. J. Clin. Nutr. 8, 764–774 (1975); N. V. Davydenko, I. P. Smirnova, E. A. Kvasha, and I. M. Gorbas, The relationship between the Cu and Zn intake with food and the prevalence of ischemic heart disease and its risk factors, Liksprow 6, 73–77 (1975).

    Google Scholar 

  46. S. M. Tang, Hair zinc and copper concentration in patients with epilepsy, The Chinese Journal of Neurology and Psychiatry 24, 124–125 (1991).

    Google Scholar 

  47. K. P. Shrestha and A. Oswaldo, Trace elements in hair of epileptic and normal subjects, Sci. Total Environ. 67, 215–225 (1987).

    Article  PubMed  CAS  Google Scholar 

  48. S. K. Taneja, M. Mahajan, S. Gupta, and K. P. Singh, Assessment of copper and zinc status in hair and urine of young women descendants of NIDOM parents, Biol. Trace Element Res. 62, 255–264 (1998).

    CAS  Google Scholar 

  49. K. Obara, T. Saito, H. Sato, K. Yamakage, T. Watanabe, M. Kizawa, et al. Germanium poisoning: clinical symptoms and renal damage caused by long-term intake of germanium, Jpn. J. Med. 30, 67–72 (1991).

    PubMed  CAS  Google Scholar 

  50. M. Iijima, A case of inorganic germanium poisoning with peripheral and cranial neuropathy, myopathy, and autonomic dysfunction, No To Shinkei 42, 851–856 (1990).

    PubMed  CAS  Google Scholar 

  51. H. Morita, S. Shimomura, K. Okagawa, S. Saito, C. Sakigawa, and H. Sato, Determination of germanium and some other elements in hair, nail, and toenail from persons exposed and unexposed to germanium, Sci. Total Environ. 58, 237–242 (1986).

    Article  PubMed  CAS  Google Scholar 

  52. X. Peng, Z. Lingxia, G. N. Schrauzer, and G. Xiong, Selenium, boron, and germanium deficiency in the etiology of Kashin-Beck disease, Biol. Trace Element Res. 77, 193–197 (2000).

    Article  CAS  Google Scholar 

  53. M. Benderour, K. Hess, M. D. Gadet, B. Dousset, P. Nabet, and F. Bellville, Effect of boric acid solution on cartilage metabolism, Biochem. Biophys. Res. Commun. 234, 263–268 (1997).

    Article  Google Scholar 

  54. T. K. Cherniaeva, N. A. Matveeva, I. G. Kuzmichev, and M. P. Gracheva, Heavy metal content of the hair of children in industrial cities, Gigiena I Sanitariia 3, 26–28 (1997).

    PubMed  Google Scholar 

  55. B. Nowak and J. Chmielnicka, Relationship of lead and cadmium to essential elements in hair, teeth and nails of environmentally exposed people, Ecotoxicol. environ. Safety 46, 265–274 (2000).

    Article  PubMed  CAS  Google Scholar 

  56. A. Furman and M. Laleli, Semi-occupational exposure to lead: a case study of child and adolescent street vendors in Istanbul, Environ. Res. A 83, 41–45 (2000).

    Article  CAS  Google Scholar 

  57. M. Schuhmacher, M. Belles, A. Rico, J. J. Domingo, and J. Corbella. Impact of reduction of lead in gasoline on the blood and hair lead levels in the population of Tarragona Province, Spain, 1990–1995, Sci. Total Environ. 184, 203–209 (1996).

    Article  PubMed  CAS  Google Scholar 

  58. S. C. Foo, N. Y. Khoo, A. Heng, L. H. Chua, S. E. Chia, S. N. Ong, et al. Metals in hair as biological induces for exposure, Int. Arch. Occup. Environ. Health 65, 583–586 (1993).

    Article  Google Scholar 

  59. M. Wilhelm and H. Idel, Hair analysis in environmental medicine, Zbl. Hyg. 198, 485–501 (1996).

    CAS  Google Scholar 

  60. L. Gerhardsson, V. Englyst, N. G. Lundstrom, G. Nordberg, S. Sanberg, and F. Steinall, Lead in tissues of deceased lead smelter workers, J. Trace Element Med. Biol. 9, 136–143 (1995).

    CAS  Google Scholar 

  61. E. Esteban, Hair and blood as substrate for screening children for lead, Arch. Environ. Health 54, 436–440 (1999).

    Article  PubMed  CAS  Google Scholar 

  62. R. Tuthill, Hair lead levels related to children’s classroom attention-deficit behavior, Arch. Environ. Health 51, 214–220 (1996).

    Article  PubMed  CAS  Google Scholar 

  63. B. Minder, E. A. Das-Smaal, E. F. J. M. Brand, and J. F. Orlebeke, Exposure to lead and specific attentional problems in schoolchildren, J. Learning Disabil. 27, 393–399 (1994).

    CAS  Google Scholar 

  64. G. N. Schrauzer, K. P. Shrestha, and M. F. Flores-Acre, Lithium in scalp hair of adults, students and violent criminals, Biol. Trace Element Res. 34, 161–176 (1992).

    CAS  Google Scholar 

  65. M. Marlowe, D. M. Medeiros, J. Errera, and L. C. Medeiros, Hair minerals and diet of Prader-Willi syndrome youth, J. Autism Dev. Disord. 17, 365–374 (1987).

    Article  PubMed  CAS  Google Scholar 

  66. P. S. Gentile, M. J. Trentalange, and W. Zamichek, Brief report: trace elements in the hair of autistic and control children, J. Autism Dev. Disord. 13, 205–206 (1983).

    Article  PubMed  CAS  Google Scholar 

  67. C. Huang, N. Chu, C. Lu, J. Wang, J. Tsai, J. Tzeng, et al., Chronic manganese intoxication, Arch. Neurol. 46, 1104–1106 (1989).

    PubMed  CAS  Google Scholar 

  68. C. C. Huang, N. S. Chu, C. S. Lu, R. S. Chen, and D. B. Calne, Long-term progression in chronic manganism, ten years of follow-up, Neurology 50, 698–700 (1998).

    PubMed  CAS  Google Scholar 

  69. I. Luse, M. A. Bake, G. Bergmanis, and Z. Podniece, Risk assessment of manganese, Cent. Eur. J. Public Health 51(Suppl.), 8 (2000).

    Google Scholar 

  70. L. A. Gottschalk, T. Rebello, M. S. Buchsbaum, H. G. Tucker, and E. L. Hodges, Abnormalities in hair trace elements as indicators of aberrant behavior, Comp. Psychiatry 32, 229–237 (1991).

    Article  CAS  Google Scholar 

  71. G. Saner, T. Dagoglu, and T. Ozden, Hair manganese concentrations in newborns and their mothers, Am. J. Clin. Nutr. 41, 1042–1044 (1985).

    PubMed  CAS  Google Scholar 

  72. O. Malm, Gold mining as a source of mercury exposure in the Brazilian amazon, Environ. Res. A 77, 73–78 (1998).

    Article  CAS  Google Scholar 

  73. WHO, Inorganic mercury, in Environmental Health Criteria, Volume 118, World Health Organization, Geneva (1991).

    Google Scholar 

  74. WHO, Methylmercury, in Environmental Health Criteria, Volume 101, World Health Organization Geneva (1990).

    Google Scholar 

  75. P. Grandjean, R. F. White, A. Nielson, D. Cleary, and E. C. de Olivera-Santos, Methylmercury neurotoxicity in Amazonian children downstream from gold mining, Environ. Health Perspect. 107, 587–591 (1999).

    Article  PubMed  CAS  Google Scholar 

  76. G. B. Ramirez, C. V. Cruz, M. S. Pagulayan, E. Ostrea, and C. Oalisay, The Tagum study. I: Analysis and clinical correlates of mercury in maternal and cord blood, breast milk, meconium and infants’ hair, Pediatrics 106, 774–781 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. A. Oskarsson, B. J. Lagervist, B. Ohlin, and K. Lundberg, Mercury levels in the hair of pregnant women in a polluted area in Sweden, Sci. Total Environ. 151, 29–35 (1994).

    Article  PubMed  CAS  Google Scholar 

  78. K. Juhlshamn, A. Andersen, O. Ringdal, and J. Morkore, Trace elements in the Faroe Islands I. Element levels in edible parts of whales (Globicephalus mekanus), Sci. Total Environ. 65, 53–62 (1987).

    Article  Google Scholar 

  79. A. D. Matthews, Mercury content of commercially important fish of the Seychelles and hair mercury levels of a selected part of the population, Environ. Res. 30, 305–312 (1983).

    Article  PubMed  CAS  Google Scholar 

  80. J. C. Hansen, H. C. Wulf, N. Kormann, and K. Alog, Human exposure to heavy metals in East Greenland, I. Mercury, Sci. Total Environ. 26, 233–243 (1983).

    Article  PubMed  CAS  Google Scholar 

  81. J. C. Sherlock, D. G. Lindsay, J. E. Hislop, W. H. Evans, and T. R. Collier, Duplication diet study on mercury intake by fish consumers in the United Kingdom, Arch. Environ. Health 37, 271–278 (1982).

    PubMed  CAS  Google Scholar 

  82. N. Ishihara, K. Urashiyama, and T. Suzuki, Inorganic and organic mercury in blood, urine and hair in low level mercury vapor exposure, Int. Arch. Occup. Environ. Health 40, 249–253 (1997).

    Article  Google Scholar 

  83. F. Bakir, S. F. Damluji, L. Amin-Zaki, M. Murtadha, A. Khalida, Y. Al-Raulin, et al., Methylmercury poisoning in Iraq, Science 181, 230–241 (1973).

    Article  PubMed  CAS  Google Scholar 

  84. R. W. Phelps, T. W. Clarkson, T. G. Kershaw, and B. Wheatly, Interrelationships of blood and hair mercury in a North American population exposed to methylmercury, Arch. Environ. Health 35, 161–167 (1980).

    PubMed  CAS  Google Scholar 

  85. S. Skerfving, Methylmercury exposure, mercury levels in blood and hair, and health status in Swedes consuming contaminated fish, Toxicology 2, 3–23 (1974).

    Article  PubMed  CAS  Google Scholar 

  86. I. Amin-Zaki, S. Elhassani, M. A. Majeed, T. W. Clarkson, R. A. Doherty, M. R. Greenwood, et al., Perinatal methylmercury poisoning in Iraq, Am. J. Dis. Child 130, 1070–1076 (1976).

    PubMed  CAS  Google Scholar 

  87. M. Harada, J. Nakanishi, S. Konuma, K. Ohno, T. Kimura, H. Yamaguchi, et al., The present mercury contents of the scalp hair and clinical symptoms in inhabitants of the Minamata area, Environ. Res. A 77, 160–164 (1998).

    Article  CAS  Google Scholar 

  88. J. T. Salonen, K. Seppanen, K. Nyyssonen, H. Korpela, J. Kauhanen, M. Kantola, et al., Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular and any death in Eastern Finnish men, Circulation 91, 645–655 (1995).

    PubMed  CAS  Google Scholar 

  89. J. T. Salonen, K. Seppanen, T. A. Lakka, R. Salonen, and G. H. Kaplan, Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4-year follow-up study in men in Eastern Finland, Atherosclerosis 148, 265–273 (2000).

    Article  PubMed  CAS  Google Scholar 

  90. T. Suzuki, T. Hongo, N. Matsuo, H. Imai, M. Nakazawa, T. Abe, et al., An acute mercuric mercury poisoning: chemical speciation of hair mercury shows a peak of inorganic mercury value, Hum. Exp. Toxicol. 11, 53–57 (1992).

    Article  PubMed  CAS  Google Scholar 

  91. Y. Mano, T. Takayanagi, A. Ishitani, and T. Hirota, Mercury in the hair of patients with ALS, Clin. Neurol. 29, 844–848 (1989).

    CAS  Google Scholar 

  92. F. N. Marzulli and D. W. C. Brown, Potential systemic hazards of topically applied mercurials, J. Soc. Cosmet. Chem. 23, 875–886 (1972).

    CAS  Google Scholar 

  93. B. Gammelgaard and N. K. Veien, Nickel in nails, hair and plasma from nickel-hypersensitive women, Derm Venerol. (Stock.) 70, 417–420 (1990).

    CAS  Google Scholar 

  94. Y. D. Cheng, G. S. Zhuang, M. G. Tan, M. Zhi, and W. Zhou, Study of correlation of Se content in human hair and internal organs by INAA, Biol. Trace Element Res. 26–27, 737–741 (1990).

    Google Scholar 

  95. P. Bratter, V. E. Negretti de Bratter, W. G. Jaffe, and H. M. Castellano, Selenium status of children living in seleniferous areas of Venezuela, J. Trace Element Electrolytes Health Dis. 5, 269–270 (1991).

    CAS  Google Scholar 

  96. K. Seppanen, M. Kantola, R. Laatikainen, K. Nyyssonen, V. P. Valkonen, V. Kaarlopp, et al., Effect of supplementation with organic selenium on mercury status as measured by mercury in pubic hair, J. Trace Elements Med. Biol. 14, 84–87 (2000).

    Article  CAS  Google Scholar 

  97. I. Lombeck, K. Kasperek, H. D. Harbisch, K. Becker, E. Schumann, W. Schroter, et al., The selenium state of children. II. Selenium content of serum, whole blood, hair and activity of erythrocyte glutathione peroxidase in dietically treated patients with phenylketonuria and maple syrup urine disease, Eur. J. Pediatr. 128, 213–223 (1978).

    Article  PubMed  CAS  Google Scholar 

  98. M. L. Gallagher, P. Webb, R. Crounse, I. Bray, A. Webb, and E. Settle, Selenium levels in new growth hair and in white blood during ingestion of a selenium supplement for 6 weeks, Nutr. Res. 4, 577–582 (1984).

    Article  CAS  Google Scholar 

  99. J. McCormack and W. McKinney, Thallium poisoning in group assassination attempt, Postgrad. Med. 74, 239–244 (1983).

    PubMed  CAS  Google Scholar 

  100. P. Trenkwalder, K. Bencze, and H. Lydtin, Chronische thalliumintoxikation. Dtsch. Med. Wschr, 109, 1561–1566 (1984).

    Article  PubMed  CAS  Google Scholar 

  101. J. Kucera, A. R. Byrne, A. Mravcova, and J. Lener, Vanadium levels in hair and blood of normal and exposed persons, Sci. Total Environ. 15, 191–205 (1992).

    Article  Google Scholar 

  102. K. M. Hambridge, C. Hambridge, M. Jacobs, and J. B. Baum, Low levels of zinc in hair, anorexia, poor growth, and hypogeusia in children, Pediatr. Res. 6, 868–874 (1972).

    Google Scholar 

  103. J. A. Halsted, H. A. Ronaghy, P. Abadi, H. Haghsheann, G. H. Amirhakem, R. H. Barakat, et al., Zinc deficiency in man: the Shiraz experiment, Am. J. Med. 53, 277–284 (1972).

    Article  PubMed  CAS  Google Scholar 

  104. W. H. Strain, L. T. Steadman, C. A. Lankau, W. P. Berliner, and W. J. Pories, Analysis of zinc levels in hair for the diagnosis of zinc deficiency in man, J. Lab. Clin. Med. 68, 244–249 (1966).

    PubMed  CAS  Google Scholar 

  105. P. A. Walravens and K. M. Hambridge, Growth of infants fed a zinc supplemented formula, Am. J. Clin. Nurt. 29, 1114–1121 (1976).

    CAS  Google Scholar 

  106. C. Castillo-Duran, H. Garcia, P. Venegas, I. Torrealba, E. Panteon, N. Concha, et al., Zinc supplementation increases growth velocity of male children and adolescents with short stature, Acta Paediatr. 83, 633–637 (1994).

    Google Scholar 

  107. C. W. Weber, G. W. Nelson, M. V. de Vaquera, and P. B. Pearson, Trace elements in the hair of healthy and malnourished children, J. Trop. Pediatr. 36, 230–234 (1990).

    PubMed  CAS  Google Scholar 

  108. L. Perrone, G. Gialanella, V. Giardano, A. La Manna, R. Moro, and R. Di Toro, Impaired zinc metabolic status in children affected by idiopathic nephrotic syndrome, Eur. J. Pediatr. 149, 438–440 (1990).

    Article  PubMed  CAS  Google Scholar 

  109. R. S. Gibson and M. S. DeWolfe, Copper, zinc, manganese, vanadium, and iodine concentrations in the hair of Canadian low birth weight neonates, Am. J. Clin. Nutr. 32, 1728–1733 (1979).

    PubMed  CAS  Google Scholar 

  110. A. Varkonyi, M. Boda, S. Nagy and B. Nyilasi, Determination of hair trace elements in childhood celiac disease and in optic fibrosis, Acta Pediatr. Hung. 32, 159–165 (1992).

    CAS  Google Scholar 

  111. B. Falkiewicz, E. Dabrowska, J. Lukasiak, D. Cajzer, and I. Jablonska-Kaszewska, Zinc deficiency and normal contents of magnesium and calcium in metabolic X syndrome patients as assessed by the analysis of hair element concentrations, BioFactors 11, 139–141 (2000).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamberger, R.J. Validity of hair mineral testing. Biol Trace Elem Res 87, 1–28 (2002). https://doi.org/10.1385/BTER:87:1-3:001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:87:1-3:001

Index Entries

Navigation