Skip to main content
Log in

Serum copper and zinc concentrations in healthy children aged 3–14 years in greece

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc (Zn) and copper (Cu) are essential trace elements in people, being required for functional activity of several enzyme systems. In this study, we determined Cu and Zn concentrations in the serum of 105 healthy children randomly selected, aged 3–14 yr, residing in a region of Greece (Thrace), and we investigated their association with children's gender, age, height, weight, and nutritional habits. The mean levels of Zn and Cu were 15.01±2.95 μmol/L and 26.18±5.47 μmol/L, respectively, with no significant difference between boys and girls. A significant positive correlation was found between age and Zn levels, and a negative one was found between age and Cu levels. Both Zn and Cu levels tended to increase with height, whereas Zn levels significantly decreased with increasing body mass indent (BMI). The consumption of meat, milk, and eggs were independent determinants for higher Zn levels, and the consumption of legumes and fruits were independent determinants for higher Cu levels. A significant negative correlation was found between Zn and Cu levels. In conclusion, our study, the first one evaluating the serum status of Cu and Zn in healthy Greek children, identified significant correlations of Zn and Cu levels with their age, height, BMI, and nutritional habits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Spevackova, B. Benes, J. Smid, and V. Spevacek, Comparison of concentration of Cu and Zn in children population. Central Eur. J. Public Health 4, 102–105 (1996).

    CAS  Google Scholar 

  2. P. N. Singla, P. Chand, A. Kumar, and J. S. Kachhawaha, Serum, zinc and copper levels in children with protein energy malnutrition, Indian J. Pediatr. 63, 199–203 (1996).

    PubMed  CAS  Google Scholar 

  3. O. M. Alarcon, J. Reinosa Fuller, T. M. Silva, C. Angarita, E. Teran, M. Navas, et al. Serum level of Zn, Cu and Fe in healthy schoolchildren residing in Merida, Venezuela, Arch. Lationoamericanos Nutr. 47, 118–122 (1997).

    CAS  Google Scholar 

  4. P. J. Agget, Physiology and metabolism of essential trace elements: an outline, Clin. Endocrinol. Metabol. 14, 513–543 (1985).

    Article  Google Scholar 

  5. R. J. Cousins, Nutritional regulation of host defense systems: Emphasis on trace elements, in Mineral Homeostasis in the Elderly, Alan R. Liss, New York, pp. 207–222 (1989).

    Google Scholar 

  6. N. Jagarinec, Z. Glegar-Mestric, B. Surina, D. Vrhovski-Hembrang, and V. Preden-Kerekovic, Pediatric refence intervals for 34 biochemical analytes in school children and adolescents. Clin. Chem. Lab. Med. 36, 327–337 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. C. D. Romero, P. H. Sanchez, F. L. Blanco, E. R. Rodriguez, and L. S. Majem, Serum copper and zinc concentrations in a representative sample of the Canarian population, J. Trace Elements Med. Biol. 16, 75–81 (2002).

    Article  CAS  Google Scholar 

  8. J. M. Hempe and R. J. Cousins, in Present Knowledge in Nutrition, M. L. Brown, ed., ILSI, Nutrition Foundation, Washington, DC, pp. 251–280 (1990).

    Google Scholar 

  9. L. M. Klevay, Coronary heart disease, the zinc/cooper hypothesis, Am. J. Clin. Nutr. 28, 764–770 (1975).

    PubMed  CAS  Google Scholar 

  10. N. Y. Yount, D. J. Mc Namara, A. A. Al Ohtman, and K. Y. Lei, The effect of copper deficiency on rat hepatic 3-hydroxy-3-methylglutaril co-enzyme. A reductase activity, J. Nutr. Biochem. 1, 27–33 (1990).

    Google Scholar 

  11. S. Reunancy, P. Knekt, J. Marniemi, J. Maki, J. Maatela, and A. Aroma, Serum calcium, magnesium, copper and zinc and risk of cardiovascular disease, Eur. J. Clin. Nutr. 50, 431–437 (1996).

    Google Scholar 

  12. K. H. Schulpis, T. Karakonstantakis, A. Bartzeliotou, G. A. Karika, and J. Papassotiriou, The association of serum lipids, lipoproteins and apolipoproteins with selected trace elements and minerals in phenylketonuric patients on diet, Clin. Nutr. 23, 401–407 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. R. Raghunath, R. M. Tripathi, K. Vinod, A. P. Sathe, R. N. Khandekar, and K. S. V. Nambi, Assessment of Pb, Cd, Cu, and Zn exposures of 6- to 10-year-old children in Mumbai, Environ. Res. 80, 215–221 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. E. Kouremenou-Dona, A. Dona, J. Papoutsis, and C. Spilipoulou, Copper and zinc concentrations in serum of healthy Greek adults, Sci. Total Environ. 359, 76–81 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. M. De Onis and J. P. Habicht, Antrhopometric reference data for internations use: recommendations from a World Health Organisation. Expert Committee. Am. J. Clin. Nutr. 64, 650–658 (1996).

    PubMed  Google Scholar 

  16. M. Ohtake and T. Tamura, Serum zinc and copper levels in healthy Japanese children, Tohoku J. Exp. Med. 120, 99–103 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. M. Bekaroglu, Y. Aslan, Y. Gedik, et al., Relationships between serum free fatty acids and zinc and attention deficit hyperactivity disorder: a research note, J. Child Psychol. Psychiatry 37, 225–227 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. S. C. Buxaderas and R. Farre-Rovira, Whole blood and serum zinc levels in relation to sex and age, Rev. Esp. Fisiol. 41, 463–470 (1985).

    PubMed  CAS  Google Scholar 

  19. T. Kosielec, K. Kasczyk-Kaczmarek, L. Kotkowiak, J. Pozniak, and I. Nocen, The level of calcium, magnesium, zinc and copper in blood serum in children and young people between 5 and 18 years of age. Przegl. Lck. 51, 401–405 (1994).

    Google Scholar 

  20. C. Fons, J. F. Brun, M. Fussellier, G. Cassanas, L. Bardet, and A. Orsetti, Serum zinc and somatic growth in children with growth retardation, Biol. Trace Element Res. 32, 399–404 (1992).

    CAS  Google Scholar 

  21. J. P. Van Wouwe and I. Waser, Comparison between total and ultra filtrable serum zinc as test to diagnose zinc deficiency in infants and children. Biol. Trace Element Res. 40, 203–211 (1994).

    Article  Google Scholar 

  22. W. Varavithya, P. Porananout, S. Srianujata, and W. Thongonopakul, Zinc status in normal Thai infants and children, Southeast Asian J. Trop. Med. Public Health 10, 534–539 (1979).

    PubMed  CAS  Google Scholar 

  23. C. F. Tessmer, W. Krohn, D. Johnston, T. B. Forrest, M. Hrgovcic, and B. Brown, Serum copper in children (6–12 years old). An age-correction factor, Am. J. Clin. Pathol. 60, 870–878 (1973).

    PubMed  CAS  Google Scholar 

  24. H. Ogihara, T. Ogihara, M. Miki, H. Yasuda, and M. Mino, Plasma copper and antioxidantstatus in Wilson's disease, Pediatr. Res. 37, 219–226 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. S. C. Buxaderas and R. Farre-Rovira, Whole blood and serum copper levels in relation to sex and age, Rev. Esp. Fisiol. 42, 213–217 (1986).

    PubMed  CAS  Google Scholar 

  26. V. Carpentieri, J. Myers, L. Thorpe, C. W. Daeschner III, and M. E. Haggard, Copper, zinc and iron in normal and leukemic lymphocytes from children, Cancer Res. 46, 981–984 (1986).

    PubMed  CAS  Google Scholar 

  27. D. J. Malvy, J. Arnaud, B. Burtschy, et al., Reference values for serum zinc and selenium of French healthy children, Eur. J. Epidemiol. 9, 155–161 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. G. P. Butrimowitz and W. C. Purdy, Resolutions of age-depentent reference intervals: polynomial regression methodology with applicability to plasma zinc levels in a childhood population, Clin. Biochem. 12, 33–36 (1979).

    Article  Google Scholar 

  29. M. Hrgovcic, C. F. Tessmer, T. M. Mickler, B. Mosier, and G. H. Taylor, Serum copper levels in leukaemia. Special reference to Hodgkin's disease, Cancer 21, 743–755 (1968).

    Article  PubMed  CAS  Google Scholar 

  30. M. Rukgauer, J. Klein, and J. D. Kruse-Jarres, Reference values for the trace elements copper, manganese, selenium and zinc in the serum/plasma of children, adolescents, and adults, J. Trace Elements Med. Biol. 11, 92–98 (1997).

    CAS  Google Scholar 

  31. A. S. Prasad, Discovery and importance of Zn in human nutrition, Fed. Proc. 43, 2829–2834 (1984).

    PubMed  CAS  Google Scholar 

  32. C. F. Mills, The significance of copper deficiency in human nutrition and health, Am. Rev. Nutr. 49, 173–178 (1985).

    Article  Google Scholar 

  33. R. J. Cousins, Absorption, transport and hepatic metabolism of copper and zinc, Physiol. Rev. 65, 34–42 (1985).

    Google Scholar 

  34. S. Samman and D. C. Roberts, The effect of Zn supplement on plasma Zn and Cu levels and reported symptoms in healthy volunteers, Med. J. Aust. 146, 246–249 (1987).

    PubMed  CAS  Google Scholar 

  35. A. A. Paul, G. A. Southgate, and J. Russel, The Composition of Food, HMSO Books London, (1980).

    Google Scholar 

  36. J. R. Hunt, Bioavailability of iron, zinc, and other trace minerals from vegetarian diets, Am. J. Clin. Nutr. 78, 633–639 (2003).

    Google Scholar 

  37. J. L. Rosado, Zinc and copper: proposed fortification levels and recommended zinc compounds, J. Nutr. 133, 2985–2989 (2003).

    Google Scholar 

  38. C. S. Torrejon, C. Castillo-Duran, E. D. Hertrampf, and M. Ruz, Zinc and iron nutrition in Chilean children fed fortified milk provided by the Complementary National Food Program, Nutrition 20, 177–180 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arvanitidou, V., Voskaki, I., Tripsianis, G. et al. Serum copper and zinc concentrations in healthy children aged 3–14 years in greece. Biol Trace Elem Res 115, 1–12 (2007). https://doi.org/10.1385/BTER:115:1:1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:115:1:1

Index Entries

Navigation