Skip to main content
Log in

Effect of excessive dietary fluoride on nutrient digestibility and retention of iron, copper, zinc, and manganese in growing pigs

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Ninety-six crossbred growing pigs were used to evaluate the effects of fluoride levels on growth performance, nutrient digestibility, and the retention of minerals in tissues. Four dietary treatments were formulated by supplementing fluorine (as NaF) to a corn-soybean basal diet (39.75 mg/kg F) to provide the following added fluorine levels: 0, 50 100, and 150 mg/kg fluorine. The results showed pigs of the 100 and 150 mg/kg fluorine-added groups had decreased average daily gain (ADG) and increased feed gain ratio (F/G) compared to the control (p<0.05). Apparent digestibility of protein and calcium in 100 and 150 mg/kg fluorinetreated groups was significantly lower than that of the control (p<0.05). On the other hand, iron, copper, zinc, and manganese levels in most tissues of the 100 and 150 mg/kg fluorine groups were markedly changed compared to the control (p<0.05). However, growth performance, nutrient digestibility, and mineral concentrations in all tissues of pigs were not significantly affected by the addition of 50 mg/kg fluorine (p>0.05). Thus, this study suggested that excess fluoride levels could decrease growth performance and change the retention of iron, copper, zinc, and manganese in pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Zahvoronkov and L. S. Strochkova, Fluorosis: geographical pathology and some experimental findings, Fluoride 14, 182–191 (1981).

    Google Scholar 

  2. Z. D. Wei and Y. Wei, Fluoridation in China: a clouded future. Fluoride 35, 1–4 (2002).

    CAS  Google Scholar 

  3. G. Y. Liu, C. Y. Chai, and L. Cui, Fluoride causing abnormally elevated serum nitric oxide levels in chicks, Environ. Toxicol. Pharmacol. 13, 199–204 (2003).

    Article  CAS  Google Scholar 

  4. P. H. B. Hahn and W. Guenter, Effect of dietary fluoride and aluminum on laying hen performance and fluoride concentration in blood, soft tissue, bone and egg, Poult. Sci. 65, 1343–1349 (1985).

    Google Scholar 

  5. G. Huyghebaert and G. D. Groote, Effect of dietary fluoride on performances and bone characteristics of broilers and the influence of drying and defatting on bone-breaking strength, Poult. Sci. 67, 950–955 (1988).

    PubMed  CAS  Google Scholar 

  6. A. M. Abdelhamid and T. M. Dorra, Effects of feedborne fluorine intoxication on broiler chick's performance, biochemistry, physiology and pathology, Arch. Anim. Nutr. 42, 133–145 (1993).

    Article  Google Scholar 

  7. U. N. Samal and B. N. Naik, Fluoride levels in milk and blood serum of cattle, Environ. Ecol. 13, 415–417 (1995).

    CAS  Google Scholar 

  8. J. J. Heindel, H. K. Bates, C. J. Price, et al., Developmental toxicity evaluation of sodium fluoride administered to rats and rabbits in drinking water, Fundam. Appl. Toxicol. 30, 162–177 (1996).

    Article  PubMed  CAS  Google Scholar 

  9. G. E. Milhaud, M. A. Borba, and S. Krishnaswamy, Effect of fluoride ingestion on dental fluorosis in sheep, Am. J. Vet. Res. 48, 873–879 (1987).

    PubMed  CAS  Google Scholar 

  10. Y. Yoshisa, Experimental studies on chronic fluorine poisoning, Jpn. J. Ind. Health 1, 683–690 (1959).

    Google Scholar 

  11. B. S. Zheng, A Study on Fluoride Rollution and Fluorosis Cases in Industry Area, Chinese EnvironmentalSccience Publisher, Beijing (1996).

    Google Scholar 

  12. L. K. Arjun, K. P. Uday, G. S. Rao, et al., Additional beneficial effect of tamarind ingestion over defluoridated water supply to adolescent boys in a fluorotic area, Nutrition 20, 433–436 (2004).

    Article  CAS  Google Scholar 

  13. R. Shiells and G. Falk, Retinal on-bipolar cells contain a nitric oxide-sensitive guanylate cyclase, Neuroreport 10, 845–851 (1992).

    Article  Google Scholar 

  14. N. J. Chinoy and D. Patel, Influence of fluoride on biological free radicals in ovary of mice and its reversal, Environ. Sci. 6, 171–184 (1998).

    CAS  Google Scholar 

  15. R. Rzeuski, D. Chlubek, and Z. Machoy, Interactions between fluoride and biological free radical reactions, Fluoride 31, 43–45 (1998).

    CAS  Google Scholar 

  16. T. Nowak and P. J. Maurer, Fluoride inhibition of yeast enolase. 2. Structural properties of the ligand complexes determined by nuclear relaxation rate studies, Biochemistry 20, 6901–6911 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. T. Nilsson and R. Branden, Kinetic study of the interaction between ribulose bisphosphate carboxylase/oxygenase and inorganic fluoride, Biochemistry 22, 1641–1645 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. C. Rich and J. Ensinck, Effect of sodium fluoride on calcium metabolism in human beings, Nature 191, 184–185 (1961).

    Article  PubMed  CAS  Google Scholar 

  19. R. E. Pyke, W. G. Hockstra, and P. H. Phillips, Effect of fluoride on magnesium deficiency in guinea pigs, J. Nutr. 92, 311–316 (1967).

    PubMed  CAS  Google Scholar 

  20. R. H. Ophaug and L. Singer, Effect of fluoride on the mobilization of skeletal magnesium and soft-tissue calcinosis during acute magnesium deficiency in the rat, J. Nutr. 106, 771–777 (1976).

    PubMed  CAS  Google Scholar 

  21. AOAC, Official Methods of Analysis, 15th ed., Assocition of Official Analytical Chemists. Washington, DC (1990).

    Google Scholar 

  22. S. C. Wang, Food Hygiene Testing and Technology Handbook, Chemical Industry Press, Beijing, pp. 185–189 (1994).

    Google Scholar 

  23. T. W. Burnell, E. R. Peo, A. J. Lewis, et al., Effect of dietary fluorine on growth, blood and bone characteristics of growing-finishing pigs, J. Anim. Sci. 63, 2053–2067 (1986).

    PubMed  CAS  Google Scholar 

  24. X. Q. Liang and D. Y. Feng, Study on effect of dietary fluorine levels on broiler growth and diagnosis of fluorosis, Acta Vet. Zootech. Sin. 29, 517–522 (1998).

    Google Scholar 

  25. T. B. Van and G. F. Combs, Fluorosis in the laying hen, Poult. Sci. 63, 1543–1552 (1984).

    Google Scholar 

  26. V. Kapoor and T. Prasad, Effect of dietary fluorine on growth, nutrient digestibility and mineral balances in calves, Indian J. Anim. Sci. 61, 1326–1329 (1991).

    Google Scholar 

  27. W. Guenter and P. H. B. Hahn, Fluorine toxicity and laying hen performance, Poult. Sci. 65, 769–778 (1986).

    PubMed  CAS  Google Scholar 

  28. M. Maurer, M. Cheng, B. Boysen, et al., Two-year carcinogenicity study of sodium fluoride in rats, J. Natl. Cancer Inst. 82, 1118–1126 (1990).

    Article  PubMed  CAS  Google Scholar 

  29. A. Fujii and T. Tamura, Deleterious effect of sodium fluoride on gastrointestinal tract, Gen. Pharmacol. 20, 705–710 (1989).

    PubMed  CAS  Google Scholar 

  30. T. K. Das, A. K. Susbeela, L. P. Gapta, et al., Toxic effects of chronic fluoride ingestion on the upper gastrointestinal tract, Fluoride 28, 48–48 (1995).

    Google Scholar 

  31. A. Shashi, Histopathological effects of sodium fluoride on the duodenum of rabbits, Fluoride 35, 28–37 (2002).

    CAS  Google Scholar 

  32. K. Heigeland, Effect of fluoride on protein and collagen biosynthesis in rabbit dental pulp in vitro, Scand. J. Dent. Res. 84, 276–285 (1976).

    Google Scholar 

  33. S. P. Shashi and J. P. Singh, Effect of fluoride administration on organs of gastrointestinal tract—an experimental study on rabbits—effect on tissue proteiins, Fluoride 20, 183–188 (1987).

    CAS  Google Scholar 

  34. W. S. Ruliffson, L. V. Burns, and J. S. Hughes, The effect of fluoride ion on 59Fe levels in blood of rats, Trans. Kansas Acad. Sci. 66, 52–58 (1963).

    Article  PubMed  CAS  Google Scholar 

  35. M. E. Wegner, L. Singer, and R. H. Ophaug, The interrelation of fluoride and iron in anemia, Proc. Soc. Exp. Biol. Med. 153, 414–418 (1976).

    PubMed  CAS  Google Scholar 

  36. S. Kahl, K. Wolcik, and Z. Ewy, Effect of fluoride on some hematological indices and Fe distribution in blood and iron storing tissues in rat, Bull. Acad. Pol. Sci. Ser. Sci. Biol. 21, 389–393 (1973).

    CAS  Google Scholar 

  37. M. Singh and K. C. Kanwar, Copper and iron in tissue following experimental fluorosis, Fluoride 14, 107–112 (1981).

    CAS  Google Scholar 

  38. J. D. Wang and J. X. Li, Effect of sodium fluoride on some elements in rabbits, Chin. J. Vet. Sci. Technol. 7, 30–32 (1989).

    Google Scholar 

  39. Y. X. She, D. Z. Gesang, F. Y. Tian, et al., Analysis of fluorine concentration in rabbit blood and trace elements in its muscles, Chin. J. Anim. Quarantine 19, 23–24 (2002).

    Google Scholar 

  40. S. S. Jolly, O. P. Sharma, G. Garg, et al., Kidney changes and kidney stones in endemic fluorosis, Fluoride 13, 10–16 (1980).

    CAS  Google Scholar 

  41. R. L. Mittal, S. S. Sidhu, and S. S. Khokhar, Role of copper in skeletal changes in fluorosis: an experimental study in rabbits, Fluoride 20, 104–108 (1987).

    CAS  Google Scholar 

  42. A. S. Prasas, Trace Elements and Iron in Human Metabolism, Plenum Medical, New York, pp. 17–39 (1978).

    Google Scholar 

  43. H. C. Hodge and F. A. Smith, Toxic Effects of Inorganic Fluoride, in Fluorine Chemistry, Vol. IV, J. H. Simons, ed., Academic, New York, pp. 127–134 (1965).

    Google Scholar 

  44. D. Hillman, D. L. Bolenbaugh, and E. M. Convey, Hypothyroidism and anemia related to fluoride in dairy cattle, J. Dairy Sci. 62, 416–423 (1979).

    Article  PubMed  CAS  Google Scholar 

  45. M. Singh, Effect of fluoride on tissue manganese levels in mice, Sci. Total Environ. 22, 285–288 (1982).

    Article  PubMed  CAS  Google Scholar 

  46. K. C. Kanwar and M. Singh, Zinc, copper and manganese levels in various tissues tollowing fluoride administration, Experimentia 37, 1328–1329 (1981).

    Article  CAS  Google Scholar 

  47. C. S. Li, Y. B. Tan, L. L. Zhang, et al., The recognition of fluorosis as a chemical question through trace element analysis of the liver and spleen of the monkey, Endemic Dis. Bull. 5, 1–5 (1990).

    Google Scholar 

  48. B. Spittle, Psychopharmacology of fluoride: a review, Int. Clin. Psychopharmacol. 9, 79–82 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, X., Xu, Z.R. & Wang, Y.Z. Effect of excessive dietary fluoride on nutrient digestibility and retention of iron, copper, zinc, and manganese in growing pigs. Biol Trace Elem Res 107, 141–151 (2005). https://doi.org/10.1385/BTER:107:2:141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:107:2:141

Index Entries

Navigation