Skip to main content
Log in

Properties of a recombinant β-glucosidase from polycentric anaerobic fungus Orpinomyces PC-2 and its application for cellulose hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A β-glucosidase (BglA, EC 3.2.1.21) gene from the polycentric anaerobic fungus Orpinomyces PC-2 was cloned and sequenced. The enzyme containing 657 amino acid residues was homologous to certain animal, plant, and bacterial β-glucosidases but lacked significant similarity to those from aerobic fungi. Neither cellulose- nor protein-binding domains were found in BglA. When expressed in Saccharomyces cerevisiae, the enzyme was secreted in two forms with masses of about 110 kDa and also found in two forms associated with the yeast cells. K m and V max values of the secreted BglA were 0.762 mM and 8.20 µmol/(min·mg), respectively, with p-nitrophenyl-β-d-glucopyranoside (pNPG) as the substrate and 0.310 mM and 6.45 µmol/(min·mg), respectively, for the hydrolysis of cellobiose. Glucose competitively inhibited the hydrolysis of pNPG with a K i of 3.6 mM. β-Glucosidase significantly enhanced the conversion of cellulosic materials into glucose by Trichoderma reesei cellulase preparations, demonstrating its potential for use in biofuel and feedstock chemical production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohmiya, K., Sakka, K., Karita, S., and Kimura, T. (1997), Gen. Eng. Rev. 14, 365–414.

    CAS  Google Scholar 

  2. Filho, E. X. F. (1996), Can. J. Microbiol. 42, 1–5.

    Article  Google Scholar 

  3. Chen, H., Li, X.-L., and Ljungdahl, L. G. (1994), Appl. Environ. Microbiol. 60, 64–70.

    PubMed  CAS  Google Scholar 

  4. Borneman, W. S., Akin, D. E., and Ljungdahl, L. G. (1989), Appl. Environ. Microbiol. 55, 1066–1073.

    PubMed  CAS  Google Scholar 

  5. Li, X.-L., Chen, H., and Ljungdahl, L. G. (1997), Appl. Environ. Microbiol. 63, 628–635.

    PubMed  CAS  Google Scholar 

  6. Li, X.-L., Chen, H., and Ljungdahl, L. G. (1997), Appl. Environ. Microbiol. 63, 4721–4728.

    PubMed  CAS  Google Scholar 

  7. Chen, H., Li, X.-L., Blum, D. L., and Ljungdahl, L. G. (1998), FEMS Microbiol. Lett. 159, 63–68.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, H., Li, X.-L., Blum, D. L., Ximenes, E. A., and Ljungdahl, L. G. (2003), Appl. Biochem. Biotechnol. 105–108, 775–785.

    Article  PubMed  Google Scholar 

  9. Chen, H., Li, X.-L., and Ljungdahl, L. G. (1997), J. Bacteriol. 179, 6028–6034.

    PubMed  CAS  Google Scholar 

  10. Blum, D. L., Li, X.-L., Chen, H., and Ljungdahl, L. G. (1999), Appl. Environ. Microbiol. 65, 3990–3995.

    PubMed  CAS  Google Scholar 

  11. Chen, H., Li, X.-L., and Ljungdahl, L. G. (1995), Proc. Natl. Acad. Sci. USA 9, 2587–2591.

    Article  ADS  Google Scholar 

  12. Herr, D., Baumer, F., and Dellweg, H. (1978), Appl. Microbiol. Biotechnol. 5, 29–36.

    Article  CAS  Google Scholar 

  13. Chen, H., Ximenes, E. A., Li, X.-L., and Ljungdahl, L. G. (1999), in Cellulose Degradation, Ohmiya, K., Hayashi, K., Sakka, K., Kobayashi, Y., Karita, S., and Kimura, T., eds., Uni Publishers, Tokyo, Japan, pp. 173–181.

    Google Scholar 

  14. Laemmli, U. K. (1970), Nature (Lond.) 227, 680–685.

    Article  CAS  ADS  Google Scholar 

  15. Fairbanks, G., Steak, T. S., and Wallach, D. F. H. (1971), Biochemistry 10, 2606–2616.

    Article  PubMed  CAS  Google Scholar 

  16. Rutenburg, A. M., Goldbarg, J. A., Rutenburg, S. H., and Lang, R. T. (1960), J. Histochem. Cytochem. 8, 268–272.

    PubMed  CAS  Google Scholar 

  17. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Anal. Chem. 28, 350–356.

    Article  CAS  Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–273.

    PubMed  CAS  Google Scholar 

  19. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  20. Li, X.-L., Chen, H., He, Y., Blum, D. L., and Ljungdahl, L. G. (1997), in Abstracts of 97 th General Meeting of the American Society for Microbiology, American Society for Microbiology, Washington, DC, p. 424.

    Google Scholar 

  21. Steenbakkers, P. J. M., Harhangi, H. R., Bosscher, M. W., van der Hooft, M. M. C., Keltjens, J. T., van der Drift, C., Vogels, G. D., and Op den Camp, H. J. M. (2003), Biochem. J. 370, 963–970.

    Article  PubMed  CAS  Google Scholar 

  22. Steenbakkers, P. J. M., Li, X.-L., Ximenes, E. A., Arts, J. G., Chen, H., Ljungdahl, G. L., and Op den Camp, H. J. M. (2001), J. Bacteriol. 183, 5325–5333.

    Article  PubMed  CAS  Google Scholar 

  23. Bǵuin, P. and Lemaire, M. (1996), Crit. Rev. Biochem. Mol. Biol. 31, 201–236.

    Google Scholar 

  24. Fannuti, G., Ponyi, T., Black, G. W., Hazlewood, G. P., and Gilbert, H. J. (1995), J. Biol. Chem. 270, 29,314–29,322.

    Google Scholar 

  25. von Heijne, G. (1986), Nucleic Acids Res. 14, 4683–4690.

    Article  Google Scholar 

  26. Harhangi, H. R., Steenbakkers, P. J. M., Akmanova, A., Jetten, M. S. M., van der Drift, C., and Op den Camp, H. J. M. (2002), Biochem. Biophys. Acta 1574, 293–303.

    PubMed  CAS  Google Scholar 

  27. Hays, W. S., Jenison, S. A., Yamada, T., Pastuszyn, A., and Glew, R. H. (1996), Biochem. J. 319, 829–837.

    PubMed  CAS  Google Scholar 

  28. Inoue, M., Shibuya, M., Yamamoto, K., and Ebizuka, Y. (1996), FEBS Lett. 389, 273–277.

    Article  PubMed  CAS  Google Scholar 

  29. Grbnitz, F., Seiss, M., Rüknagel, K. P., and Staudenbauer, W. L. (1991), Eur. J. Biochem. 200, 301–309.

    Article  Google Scholar 

  30. Paavilainen, S., Hellman, J., and Korpela, T. (1993), Appl. Environ. Microbiol. 59, 927–932.

    PubMed  CAS  Google Scholar 

  31. Breves, R., Bronnenmeier, K., Wild, N., Lottspeich, F., Staudenbauer, W. L., and Hofemeister, J. (1997), Appl. Environ. Microbiol. 63, 3902–3910.

    PubMed  CAS  Google Scholar 

  32. Liebl, W., Gabelsberger, J., and Schleifer, K.-H. (1994), Mol. Gen. Genet. 242, 111–115.

    PubMed  CAS  Google Scholar 

  33. Henrissat, B. and Bairoch, A. (1993), Biochem. J. 293, 781–788.

    PubMed  CAS  Google Scholar 

  34. Sanz-Aparicio, J., Hermoso, J. A., Martinez-Ripoll, M., Lequerica, J. L., and Polaina, J. (1998), J. Mol. Biol. 275, 491–502.

    Article  PubMed  CAS  Google Scholar 

  35. Penttilä, M. E., André, L., Saloheimo, M., Lehtovaara, P., and Knowles, J. K. C. (1987), Yeast 3, 175–185.

    Article  PubMed  Google Scholar 

  36. Penttilä, M. E., André, L., Lehtovaara, P., Bailey, M., Teeri, T. T., and Knowles, J. K. C. (1988), Gene 63, 103–112.

    Article  PubMed  Google Scholar 

  37. Cummings, C. and Fowler, T. (1996), Curr. Genet. 29, 227–233.

    PubMed  CAS  Google Scholar 

  38. Li, X.-L. and Ljungdahl, L. G. (1996), Appl. Environ. Microbiol. 62, 209–213.

    PubMed  CAS  Google Scholar 

  39. Rothstein, S. J., Lanhners, K. N., Lazarus, C. M., Baulcombe, D. C., and Gatenby, A. A. (1987), Gene 55, 353–356.

    Article  PubMed  CAS  Google Scholar 

  40. van Rensburg, P., Van Zyl, W. H., and Pretorius, I. S. (1998), Yeast 14, 67–76.

    Article  PubMed  Google Scholar 

  41. Ngsee, J. K., Hansen, W., Walter, P., and Smith, M. (1989), Mol. Cell. Biol. 9, 3400–3410.

    PubMed  CAS  Google Scholar 

  42. Orlean, P., Kuranda, M. J., and Albright, C. F. (1991), Methods Enzymol. 194, 682–696.

    PubMed  CAS  Google Scholar 

  43. Herbaud, M. and Fevre, M. (1990), Appl. Environ. Microbiol. 56, 3164–3169.

    Google Scholar 

  44. Teunissen, M. J., Lahaye, D. H. T. P., Huis In’t Veld, J. H. J., and Vogels, G. D. (1992), Arch. Microbiol. 158, 276–281.

    Article  CAS  Google Scholar 

  45. Li, X.-L. and Calza, R. E. (1991), Enzyme Microb. Technol. 13, 622–628.

    Article  CAS  Google Scholar 

  46. Li, X.-L. and Calza, R. E. (1991), Biochem. Biophys. Acta 1080, 148–154.

    PubMed  CAS  Google Scholar 

  47. Ward, M. (1989), in EMBO-ALKO Workshop on Molecular Biology of Filamentous Fungi, Nevalainen, H. and Pentillä, M., eds., Foundation for Biotechnical and Industrial Fermentation Research, Espoo, Finland, pp. 119–128.

    Google Scholar 

  48. Archer, D. B. and Peberdy, J. F. (1997), Crit. Rev. Biotechnol. 17, 273–306.

    Article  PubMed  CAS  Google Scholar 

  49. Ohmiya, K., Shirai, M., Kurachi, Y., and Shimizi, S. (1985), J. Bacteriol. 161, 432–434.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Liang Li.

Additional information

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XL., Ljungdahl, L.G., Ximenes, E.A. et al. Properties of a recombinant β-glucosidase from polycentric anaerobic fungus Orpinomyces PC-2 and its application for cellulose hydrolysis. Appl Biochem Biotechnol 113, 233–250 (2004). https://doi.org/10.1385/ABAB:113:1-3:233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:113:1-3:233

Index Entries

Navigation