Skip to main content
Log in

Metabolic flux analysis of clostridium thermosuccinogenes

Effects of pH and Culture Redox Potential

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Clostridium thermosuccinogenes are anaerobic thermophilic bacteria that ferment various carbohydrates to succinate and acetate as major products and formate, lactate, and ethanol as minor products. Metabolic carbon flux analysis was used to evaluate the effect of pH and redox potential on the batch fermentation of C. thermosuccinogenes. In a first study, the effects of four pH values (6.50, 6.75, 7.00, and 7.25) on intracellular carbon flux at a constant redox potential of −275 mV were compared. The flux of carbon toward succinate and formate increased whereas the flux to lactate decreased significantly with a pH increase from 6.50 to 7.25. Both specific growth rate and specific rate of glucose consumption were unaffected by changes in pH. The fraction of carbon flux at the phosphoenolpyruvate (PEP) node flowing to oxaloacetate increased with an increase in pH. At the pyruvate node, the fraction of flux to formate increased with increasing pH. At the acetyl CoA node, the fraction of flux to acetate increased significantly with an increase in pH. A second study elucidated the effect of four controlled culture redox potentials (−225, −250, −275, and −310 mV) on metabolic carbon flux at a constant pH of 7.25. Lower values of culture redox potential were correlated with increased succinate, acetate, and formate fluxes and decreased ethanol and hydrogen fluxes in C. thermosuccinogenes. Lactate formation was not significantly influenced by redox potential. At the PEP node, the fraction of carbon to oxaloacetate increased with a decrease in redox potential. At the pyruvate node, the fraction of carbon to formate increased, while at the acetyl CoA node, the fraction of carbon flux to acetate increased with reduced redox potential. The presence of hydrogen in the headspace or the addition of nicotinic acid to the growth media resulted in increased hydrogen and ethanol fluxes and decreased succinate, acetate, formate, and lactate fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Datta, R., Glassner, D. A., Jain, M. K., and Vick Roy, J. R. (1991), European patent 405,707.

  2. Gokarn, R. R., Eiteman, M. A., and Sridhar, J. (1997), ACS Symp. Ser. 666, 237–253.

    Article  CAS  Google Scholar 

  3. Zeikus, J. G., Elankovan, P., and Grethlein, A. (1995), Chem. Proc. 58, 71–73.

    Google Scholar 

  4. Datta, R. (1989), US patent 4,885,247.

  5. Glassner, D. A. (1989), European patent 389,103.

  6. Glassner, D. A. and Datta, R. (1992), US patent 5,143,834.

  7. Guettler, M. V., Jain, M. K., and Soni, B. K. (1996), US patent 5,504,004.

  8. Drent, W. J., Lahpor, G. A., Wiegant, W. M., and Gottschal, J. C. (1991), Appl. Environ. Microbiol. 57, 455–462.

    CAS  Google Scholar 

  9. Montville, T. J., Parris, N., and Conway, L. K. (1985), Appl. Environ. Microbiol. 49, 733–736.

    CAS  Google Scholar 

  10. Samuelov, N. S., Lamed, R., Lowe, S., and Zeikus, J. G. (1991), Appl. Environ. Microbiol. 57, 3013–3019.

    CAS  Google Scholar 

  11. Shibai, H., Ishizak, A., Kobayshi, K., and Hirose, Y. (1974), Agric. Biol. Chem. 38, 2407–2411.

    CAS  Google Scholar 

  12. Jee, H. S., Mano, T., Nishio, N., and Nagai, S. (1987), J. Gen. Appl. Microbiol. 33, 401–408.

    CAS  Google Scholar 

  13. Jee, H. S., Mano, T., Nishio, N., and Nagai, S. (1988), J. Ferment. Technol. 66, 123–126.

    Article  CAS  Google Scholar 

  14. Kim, T. S. and Kim, B. H. (1988), Biotechnol. Lett. 10, 123–128.

    Article  CAS  Google Scholar 

  15. Aiba, S. and Matsuoka, M. (1979), Biotechnol. Bioeng. 21, 1373–1386.

    Article  CAS  Google Scholar 

  16. Chao, P.-Y., and Liao, J. C. (1993), Appl. Environ. Microbiol. 59, 4261–4265.

    CAS  Google Scholar 

  17. Diaz-Ricci, J. C., Tsu, M., and Bailey, J. E. (1992), Biotechnol. Bioeng. 38, 1318–1324.

    Article  Google Scholar 

  18. Goel, A., Ferrance, J., Jeong, J., and Ataai, M. M. (1993), Biotechnol. Bioeng. 42, 686–696.

    Article  CAS  Google Scholar 

  19. Vallino, J. J. and Stephanopoulos, G. (1993), Biotechnol. Bioeng. 41, 633–646.

    Article  CAS  Google Scholar 

  20. Reardon, K. F., Scheper, T., and Bailey, J. E. (1987), Biotechnol. Prog. 3, 153–167.

    CAS  Google Scholar 

  21. Abbad-Andaloussi, S., Durr, C., Raval, G., and Petitdemange, H. (1996), Microbiology 142, 1149–1158.

    Article  CAS  Google Scholar 

  22. Venkatesh, K. V. (1997), Proc. Biochem. 32, 651–655.

    Article  CAS  Google Scholar 

  23. Sridhar, J., Eiteman, M. A., and Wiegel, J. W. (2000), Appl. Environ. Microbiol. 66, 246–251.

    Article  CAS  Google Scholar 

  24. Sridhar, J. and Eiteman, M. A. (1999), Appl. Biochem. Biotechnol. 82, 91–101.

    Article  CAS  Google Scholar 

  25. Eiteman, M. A. and Chastain, M. J. (1997), Anal. Chim. Acta 338, 69–75.

    Article  CAS  Google Scholar 

  26. Ott, L. (1993), An Introduction to Statistical Methods and Data Analysis, 4th ed., Wadsworth, Belmont, CA.

    Google Scholar 

  27. Gottschalk, G. (1986), in Bacterial Metabolism, Springer-Verlag, New York, pp. 210–280.

    Google Scholar 

  28. Erickson, L. E. (1980), Biotechnol. Bioeng. 22, 451–456.

    Article  CAS  Google Scholar 

  29. Park, S. M., Sinskey, A. J., and Stephanopoulos, G. (1997), Biotechnol. Bioeng. 55, 864–879.

    Article  CAS  Google Scholar 

  30. Cook, G. M., Russell, J. B., Reichert, A., and Wiegel, J. (1996), Appl. Environ. Microbiol. 62, 4576–4579.

    CAS  Google Scholar 

  31. Cook, G. M., Janssen, P. H., and Morgan, H. W. (1993), Appl. Environ. Microbiol. 59, 2984–2990.

    CAS  Google Scholar 

  32. Stephanopoulos, G. N., Aristidou, A. A., and Nielson, J. (1998), Metabolic Engineering: Principles and Methodologies, Academic, New York.

    Google Scholar 

  33. Niedhardt, F. C., Ingraham, J. L., and Schaechter, M. (1990), Physiology of the Bacterial Cell: A Molecular Approach, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  34. Tsai, S. P. and Lee, Y. H. (1988), Biotechnol. Bioeng. 32, 713–715.

    Article  CAS  Google Scholar 

  35. Peguin, S. and Soucaille, P. (1996), Biotechnol. Bioeng. 51, 342–348.

    Article  CAS  Google Scholar 

  36. Guedon, E., Payot, S., Desvaux, M., and Petitdemange, H. (1999), J. Bacteriol. 181, 3262–3269.

    CAS  Google Scholar 

  37. Alam, K. Y. and Clark, D. P. (1989), J. Bacteriol. 171, 6213–6217.

    CAS  Google Scholar 

  38. Leonardo, M. R., Dailly, Y., and Clark, D. P. (1996), J. Bacteriol. 178, 6013–6020.

    CAS  Google Scholar 

  39. Lovitt, R. W., Shen, G.-J., and Zeikus, J. G. (1988), J. Bacteriol. 170, 2809–2815.

    CAS  Google Scholar 

  40. Snoep, J. L., De Graef, M. R., Joost Teixeria De Mattos, M., and Neijssel, O. M. (1992), J. Gen. Microbiol. 138, 2015–2020.

    CAS  Google Scholar 

  41. London, J. and Knight, M. (1966), J. Gen. Microbiol. 44, 241–254.

    CAS  Google Scholar 

  42. Riebling, V., Thauer, R. K., and Jungermann, K. (1975), Eur. J. Biochem. 55, 445–453.

    Article  Google Scholar 

  43. Huang, L., Forsberg, C. W., and Gibbins, L. N. (1986), Appl. Environ. Microbiol. 51, 1230–1234.

    CAS  Google Scholar 

  44. Utter, M. F. and Kolenbrander, H. M. (1972), in The Enzymes, vol. 6, 3rd ed., Boyer, P. D., ed., Academic, New York, pp. 117–165.

    Google Scholar 

  45. Jones, R. P. and Greenfield, P. F. (1982), Enzyme Microbiol. Technol. 4, 210–223.

    Article  CAS  Google Scholar 

  46. Takai, K., Sako, Y., Uchida, A., and Ishida, Y. (1997), J. Biochem. 122, 32–40.

    CAS  Google Scholar 

  47. Turenen, M., Parkinnen, E., Londesborough, J., and Korhola, M. (1987), J. Gen. Microbiol. 133, 2865–2873.

    Google Scholar 

  48. Blackwood, A. C., Neish, A. C., and Ledingham, G. A. (1957), J. Bacteriol. 72, 497–499.

    Google Scholar 

  49. Snoep, J. L., Joost Teixeira de Mattos, M., Postma, P. W., and Niejssel, O. M. (1990), Arch. Microbiol. 154, 50–55.

    Article  CAS  Google Scholar 

  50. Thauer, R. K., Kichniawy, F. H., and Jungermann, K. A. (1972), Eur. J. Biochem. 27, 282–290.

    Article  CAS  Google Scholar 

  51. Klotzsch, H. R. (1969), Methods Enzymol. 13, 381–386.

    Article  CAS  Google Scholar 

  52. Diez-Gonzalez, F., Russell, J. B., and Hunter, J. B. (1997), Arch. Microbiol. 166, 418–420.

    Article  Google Scholar 

  53. Yan, R. and Chen, J. S. (1990), Appl. Environ. Microbiol. 56, 2591–2599.

    CAS  Google Scholar 

  54. Chen, J.-S. (1995), FEMS Microbiol. Rev. 17, 263–273.

    Article  CAS  Google Scholar 

  55. Millay, R. H. and Hersh, L. B. (1976), J. Biol. Chem. 251, 2754–2760.

    CAS  Google Scholar 

  56. Clark, D. P. (1989), FEMS Microbiol. Rev. 63, 223–234.

    Article  CAS  Google Scholar 

  57. Lindmark, D. G., Paolella, P., and Wood, N. P. (1969), J. Biol. Chem. 13, 3605–3612.

    Google Scholar 

  58. Vasconcelos, I., Girbal, L., and Soucaille, P. (1994), J. Bacteriol. 176, 1443–1450.

    CAS  Google Scholar 

  59. Baut, F., Fick, M., Viriot, M. L., Andre, J. C., and Engasser, J. M. (1994), Appl. Microbiol. Biotechnol. 41, 551–555.

    Article  CAS  Google Scholar 

  60. Garrigues, C., Loubiere, P., Lindley, N. D., and Cocaign-Bousquet, M. (1997), J. Bacteriol. 179, 5282–5287.

    CAS  Google Scholar 

  61. Girbal, L. and Soucaille, P. (1994), J. Bacteriol. 176, 6433–6438.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Eiteman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridhar, J., Eiteman, M.A. Metabolic flux analysis of clostridium thermosuccinogenes . Appl Biochem Biotechnol 94, 51–69 (2001). https://doi.org/10.1385/ABAB:94:1:51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:94:1:51

Index Entries

Navigation