Skip to main content
Log in

Ethanol production using concentrated oak wood hydrolysates and methods to detoxify

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ethanol production from concentrated oak wood hydrolysate was carried out to obtain a high ethanol concentration and a high ethanol yield. The effect of added inhibitory compounds, which are typically produced in the pretreatment step of steam-explosion on ethanol fermentation, was also examined. p-Hydroxybenzoic aldehyde, a lignin-degradation product, was the most inhibitory compound tested in this study. Compounds with additional methyl groups had reduced toxicity and the aromatic acids were less toxic than the corresponding aldehydes. The lignin-degradation products were more inhibitory than the sugar-derived products, such as furfural and 5-hydroxymethylfurfural (HMF). Adaptation of yeast cells to the wood hydrolysate and detoxification methods, such as using charcoal and overlime, had some beneficial effects on ethanol production using the concentrated wood hydrolysate. After treatment with charcoal and low-temperature sterilization, the yeast cells could utilize the concentrated wood hydrolysate with 170 as well as 140 g/L glucose, and produce 69.9 and 74.2 g/L ethanol, respectively, with a yield of 0.46–0.48 g ethanol/g glucose. In contrast, the cells could not completely utilize untreated wood hydrolysate with 100 g/L glucose. Low-temperature sterilization, with or without charcoal treatment, was very effective for ethanol production when highly concentrated wood hydrolysates were used. Low-temperature sterilization has advantages over traditional detoxification methods, such as using overlime, ion exchange, and charcoal, because of the reduction in the total cost of ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lynd, L. R. (1990), Appl. Biochem. Biotechnol. 24–25, 695–719.

    Google Scholar 

  2. Ballerini, D., Desmarquest, J. P., Pourquie J., Native, F., and Rebeller, M. (1994), Bioresource Technol. 50, 17–23.

    Article  CAS  Google Scholar 

  3. Olsson, L. and Hahn-Hägerdal, B. (1996), Enzyme Microb. Technol. 18, 312–331.

    Article  CAS  Google Scholar 

  4. von Sivers, M. and Zacchi, G. (1996), Bioresource Technol. 56, 131–140.

    Article  Google Scholar 

  5. Brownell, H. H., Yu, E. K. C., and Saddler, J. N. (1986), Biotechnol. Bioeng. 28, 792–801.

    Article  CAS  Google Scholar 

  6. Shell, D. J., Torget, R., Power, A., Walter, P. J., Grohmann, K., and Hinman, N. D. (1991), Appl. Biochem. Biotechnol. 28–29, 87–97.

    Google Scholar 

  7. Ramos, L. P., Breuil, C., and Saddler, J. N. (1992), Appl. Biochem. Biotechnol. 34–35, 37–48.

    Google Scholar 

  8. Nunes, A. P., and Pourquie, J. (1996), Bioresource Technol. 57, 107–110.

    Article  CAS  Google Scholar 

  9. Mes-Hartree, M., Hogan, C., Hayes, R. D., and Saddler, J. N. (1983), Biotechnol. Lett. 5, 101–106.

    Article  CAS  Google Scholar 

  10. Mes-Hartree, M. and Saddler, J. N. (1983), Biotechnol. Lett. 5, 531–536.

    Article  CAS  Google Scholar 

  11. Clark, T. A. and Mackie, K. L. (1984), J. Chem. Tech. Biotechnol. 34B, 101–110.

    CAS  Google Scholar 

  12. Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986), J. Ferment. Technol. 64, 567–570.

    Article  CAS  Google Scholar 

  13. Burtscher, E., Bobleter, O., Schwald, W., Concin, R., and Binder, H. (1987), J. Chromatogr. 390, 401–412.

    Article  CAS  Google Scholar 

  14. Tran, A. V. and Chambers, R. P. (1985), Biotechnol. Lett. 11, 841–846.

    Article  Google Scholar 

  15. Sanchez, B. and Bautista, J. (1988), Enzyme Microb. Technol. 10, 315–318.

    Article  CAS  Google Scholar 

  16. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., and Zacchi, G. (1996), Enzyme Microb. Technol. 19, 470–476.

    Article  CAS  Google Scholar 

  17. Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–198.

    CAS  Google Scholar 

  18. Chung, I. S. and Lee, Y. Y. (1985), Biotechnol. Bioeng. 27, 308–315.

    Article  CAS  Google Scholar 

  19. Parajo, J. C., Dominguez, H., and Dominguez, J. M. (1996), Bioresource Technol. 57, 179–185.

    Article  CAS  Google Scholar 

  20. Rivard, C. J., Engel, R. E., Hayward, T. K., Nagle, N. J., Hatzis, C., and Philippidis, G. P. (1996), Appl. Biochem. Biotechnol. 57–58, 183–191.

    Google Scholar 

  21. Palmqvist, E., Hahn-Hägerdal, B., Szengyel, Z., Zacchi, G., and Reczey, K. (1997), Enzyme Microb. Technol. 20, 286–293.

    Article  CAS  Google Scholar 

  22. Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.

    CAS  Google Scholar 

  23. Banerjee, N., Bhatnagar, R., and Viswanathan, L. (1981), Enzyme Microb. Technol. 3, 24–28.

    Article  CAS  Google Scholar 

  24. Banerjee, N. and Viswanathan, L. (1981), Eur. J. Appl. Microbiol. Biotechnol. 11, 226–228.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Chul Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W.G., Lee, J.S., Shin, C.S. et al. Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Appl Biochem Biotechnol 78, 547–559 (1999). https://doi.org/10.1385/ABAB:78:1-3:547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:78:1-3:547

Index Entries

Navigation