Skip to main content

Sorghum (Sorghum bicolor L.)

  • Protocol
Book cover Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 343))

Summary

This chapter describes a stepwise protocol for Agrobacterium-mediated sorghum genetic transformation. Immature embryos from sorghum plants were used as the target explants. The Agrobacterium strain LBA4404, carrying a “super-binary” vector, was used in this protocol. Agrobacterium co-transformation vectors, one T-DNA containing the selectable marker gene and another T-DNA containing the trait gene(s), were also introduced in sorghum transformation for eliminating the selectable marker gene in the resulting transgenic plants. This chapter provides recommendations for analysis of the transgenic plants to confirm T-DNA integration into the sorghum genome and segregation of the selectable marker gene from the trait gene(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, H., Muthukrishana, S., Krishnaveni, S., Wilde, G., Jeoung, J.-M., and Liang, G. H. (1998) Biolistic transformation of sorghum using a rice chitinase gene. J. Genet. Breed. 52, 243–252.

    CAS  Google Scholar 

  2. Masteller, V. J. and Holden, D. J. (1970) The growth of and organ formation from callus tissue of sorghum. Plant Physiol. 45, 362–364.

    Article  PubMed  CAS  Google Scholar 

  3. Ma, H. and Liang G. H. (1987) Plant regeneration from cultured immature embryos of Sorghum bicolor (L.) Moench. Theor. Appl. Genet. 73, 389–394.

    CAS  Google Scholar 

  4. Cai, T., Daly, B., and Butler, L. (1987) Callus induction and plant regeneration from shoot portions of mature embryos of high tannin sorghum. Plant Cell Tissue Organ Culture 9, 245–252.

    Article  Google Scholar 

  5. Cai, T. and Butler, L. (1990) Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell Tissue Organ Culture 20, 101–110.

    Article  Google Scholar 

  6. Kaeppler, H. F. and Pedersen, J. F. (1997) Evaluation of 41 elite and exotic inbred Sorghum genotypes for high quality callus production. Plant Cell Tissue Organ Culture 48, 71–75.

    Article  Google Scholar 

  7. Chan, M. T., Lee, T. M., and Chang, H. H. (1992) Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium. Plant Cell Physiol. 33, 577–583.

    CAS  Google Scholar 

  8. Chan, M. T., Chang, H. H., Ho, S. L., Tong, W. F., and Yu, S. M. (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 22, 491–506.

    Article  PubMed  CAS  Google Scholar 

  9. Hiei, Y., Ohta, S., Komari, T., and Kumasho, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282.

    Article  PubMed  CAS  Google Scholar 

  10. Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 14, 745–750.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao, Z. Y., Gu, W., Cai, T., et al. (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet. Coop. Newslett. 72, 34–37.

    Google Scholar 

  12. Zhao, Z. Y., Gu, W., Cai, T., et al. (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol. Breeding 8, 323–333.

    Article  CAS  Google Scholar 

  13. Frame, B. R., Shou, H., Chikwamba, R. K., et al. (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129, 13–22.

    Article  PubMed  CAS  Google Scholar 

  14. Cheng, M., Fry, J. E., Pang, S., et al. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115, 971–980.

    PubMed  CAS  Google Scholar 

  15. Tingay, S., McElroy, D., Kalla, R., et al. (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11, 1369–1376.

    Article  CAS  Google Scholar 

  16. Zhao, Z. Y., Cai, T., Tagliani, L., et al. (2000) Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44, 789–798.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao, Z. Y., Glassman, K., Sewalt, V., et al. (2003) Nutritionally improved transgenic sorghum, in Plant Biotechnology 2002 and Beyond, Proceedings of the 10th IAPTC & B Congress (Vasil, I. K., ed.), Kluwer Academic Publications, Dordrecht, pp. 413–416.

    Google Scholar 

  18. Godwin, I. and Chikwamba, R. (1994) Transgenic grain sorghum (Sorghum bicolor) plants via Agrobacterium, in Improvement of Cereal Quality by Genetic Engineering (Henry, R. J. and Ronalds, J. A., eds.), Plenum Press, New York, pp. 47–53.

    Google Scholar 

  19. Ko, T. S. (1995) Genetic transformation of sorghum (Sorghum bicolor L. Moench) plants using Agrobacterium tumefaciens and the shoot apex. A dissertation, Texas A & M University.

    Google Scholar 

  20. Casas, A. M., Kononowicz, A. K., Zehr, U. B., et al. (1993) Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. USA 90, 11212–11216.

    Article  PubMed  CAS  Google Scholar 

  21. Casas, A. M., Kononowicz, A. K., Haan, T. G., et al. (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev. Biol. Plant. 33, 92–100.

    Google Scholar 

  22. Vinall, H. N. and Getty, R. E. (1921) Sudan grass and related plants. USDA Bull. 981.

    Google Scholar 

  23. Hadley, H. H. (1953) Cytological relationships between Sorghum vulgare and S. halepense. Agronomy J. 45, 139–143.

    Article  Google Scholar 

  24. Baker, H. G. (1972) Migrations of weeds, in Taxonomy, Phytogeography and Evolution (Valentine, D. H., ed.), Academic Press, London, pp. 327–347.

    Google Scholar 

  25. Doggett, H. (1988) Sorghum, in Tropical Agricultural Series, 2nd ed., Longman Scientific, Essex, UK.

    Google Scholar 

  26. Komari, T. (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep. 9, 303–306.

    Article  CAS  Google Scholar 

  27. Komari, T., Hiei, Y., Saito, Y., Murai, N., and Kumashiro, T. (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165–174.

    Article  PubMed  CAS  Google Scholar 

  28. Thompson, C., Movva, N. R., Tizard, R., et al. (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6, 2519–2523.

    PubMed  CAS  Google Scholar 

  29. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  30. Jefferson, R. A., Burgess, S. M., and Hirsh, D. (1986) β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83, 8447–8451.

    Article  PubMed  CAS  Google Scholar 

  31. Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L., and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220, 245–250.

    Article  PubMed  CAS  Google Scholar 

  32. Ohta, S., Mita, S., Hattori, T., and Nakamura, K. (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31, 805–813.

    CAS  Google Scholar 

  33. Christensen, A. H., Sharrock, R. A., and Quail, P. H. (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675–689.

    Article  PubMed  CAS  Google Scholar 

  34. An, G., Mitra, A., Choi, H. K., et al. (1989) Functional analysis of the 3' control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1, 115–122.

    Article  PubMed  CAS  Google Scholar 

  35. Rao, A. G., Hassan, M., and Hempel, J. C. (1994) Structure-function validation of high lysine analogs of α-hordothionin designed by protein modeling. Protein Eng. 7, 1485–1493.

    Article  PubMed  CAS  Google Scholar 

  36. Das, O. P., Ward, K., Ray, S., and Messing, J. (1991) Sequence variation between alleles reveals two types of copy correction at the 27-kDa zein locus of maize. Genomics 11, 849–856.

    Article  PubMed  CAS  Google Scholar 

  37. Yin, Z. and Wang, G. L. (2000) Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor. Appl. Genet. 100, 461–470.

    Article  CAS  Google Scholar 

  38. Buck, S. D., Wilde, C. D., Montagou, M. V., and Depicker, A. (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation. Mol. Breeding 6, 459–468.

    Article  Google Scholar 

  39. Wohlleben, W., Arnold, W., Broer, I., Hillemann, D., Strauch, E., and Punier, A. (1988) Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tu494 and its expression in Nicotiana tabacum. Gene 70, 25–37.

    Article  PubMed  CAS  Google Scholar 

  40. Dillen, W., De Clercq, J., Kapila, J., Zambre, M., Van Montagu, M., and Angenon, G. (1997) The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J. 12, 1459–1463.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Zhao, Zy. (2006). Sorghum (Sorghum bicolor L.). In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 343. Humana Press. https://doi.org/10.1385/1-59745-130-4:233

Download citation

  • DOI: https://doi.org/10.1385/1-59745-130-4:233

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-536-1

  • Online ISBN: 978-1-59745-130-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics