Skip to main content

Spectroscopy-Based Quantitative Fluorescence Resonance Energy Transfer Analysis

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 337))

Abstract

The combination of green fluorescent protein mutants and fluorescence resonance energy transfer (FRET) forms a powerful tool for ion channel studies. A key to successful application of green fluorescent protein-based FRET is to reliably separate the FRET signal from various non-FRET fluorescence emissions that coexist in any experimental system. This chapter introduces a FRET quantification method that is based on fluorescence spectroscopic microscopy. Application of this “spectra FRET” method to both the confocal imaging of Xenopus oocytes and the epifluorescence imaging of culture cells is described. The fluorescence intensity ratio measurement, a complementary non-FRET method for identifying the channel subunit stoichiometry, is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sekar, R. B. and Periasamy, A. (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629–633.

    Article  PubMed  CAS  Google Scholar 

  2. Truong, K. and Ikura, M. (2001) The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr. Opin. Struct. Biol. 11, 573–578.

    Article  PubMed  CAS  Google Scholar 

  3. Hink, M. A., Bisselin, T., and Visser, A. J. (2002) Imaging protein-protein interactionsin living cells. Plant Mol. Biol. 50, 871–883.

    Google Scholar 

  4. Day, R. N., Periasamy, A., and Schaufele, F. (2001) Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25, 4–18.

    Article  PubMed  CAS  Google Scholar 

  5. Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.

    Article  PubMed  CAS  Google Scholar 

  6. Clegg, R. M. (1992) Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388.

    Article  PubMed  CAS  Google Scholar 

  7. Selvin, P. R. (1995) Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334.

    Article  PubMed  CAS  Google Scholar 

  8. Heim, R. and Tsien, R. Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182.

    Article  PubMed  CAS  Google Scholar 

  9. Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    Article  PubMed  CAS  Google Scholar 

  10. Miyawaki, A. (2003) Visualization of the spatial and temporal dynamics of intracellularsignaling. Dev. Cell 4, 295–305.

    Article  PubMed  CAS  Google Scholar 

  11. Butkevich, E., Hulsmann, S., Wenzel, D., Shirao, T., Duden, R., and Majoul, I. (2004) Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr. Biol. 14, 650–658.

    Article  PubMed  CAS  Google Scholar 

  12. Mori, M. X., Erickson, M. G., and Yue, D. T. (2004) Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 304, 432–435.

    Article  PubMed  CAS  Google Scholar 

  13. Trudeau, M. C. and Zagotta, W. N. (2004) Dynamics of Ca2+-calmodulin-dependent inhibition of rod cyclic nucleotide-gated channels measured by patch-clamp fluorometry. J. Gen. Physiol. 124, 211–223.

    Article  PubMed  CAS  Google Scholar 

  14. Erickson, M. G., Alseikhan, B. A., Peterson, B. Z., and Yue, D. T. (2001) Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells. Neuron 31, 973–985.

    Article  PubMed  CAS  Google Scholar 

  15. Zheng, J., Varnum, M. D., and Zagotta, W. N. (2003) Disruption of an intersubunit interaction underlies Ca2+-calmodulin modulation of cyclic nucleotide-gated channels. J. Neurosci. 23, 8167–8175.

    PubMed  CAS  Google Scholar 

  16. Tsuboi, T., Lippiat, J. D., Ashcroft, F. M., and Rutter, G. A. (2004) ATP-dependent interaction of the cytosolic domains of the inwardly rectifying K + channel Kir6.2 revealed by fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 101, 76–81.

    Article  PubMed  CAS  Google Scholar 

  17. Zheng, J. and Zagotta, W. N. (2004) Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 42, 411–421.

    Article  PubMed  CAS  Google Scholar 

  18. Zheng, J., Trudeau, M. C., and Zagotta, W. N. (2002) Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 36, 891–896.

    Article  PubMed  CAS  Google Scholar 

  19. Staruschenko, A., Medina, J. L., Patel, P., Shapiro, M. S., Booth, R. E., and Stockand, J. D. (2004) Fluorescence resonance energy transfer analysis of subunit stoichiometry of the epithelial Na+ channel. J. Biol. Chem. 279, 27,729–27,734.

    Article  PubMed  CAS  Google Scholar 

  20. Biskup, C., Zimmer, T., and Benndorf, K. (2004) FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat. Biotechnol. 22, 220–224.

    Article  PubMed  CAS  Google Scholar 

  21. Amiri, H., Schultz, G., and Schaefer, M. (2003) FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium 33, 463–470.

    Article  PubMed  CAS  Google Scholar 

  22. Schaefer, M., Plant, T. D., Stresow, N., Albrecht, N., and Schultz, G. (2002) Functionaldifferences between TRPC4 splice variants. J. Biol. Chem. 277, 3752–3759.

    Article  PubMed  CAS  Google Scholar 

  23. Hosaka, Y., Hanawa, H., Washizuka, T., et al. (2003) Function, subcellular localization and assembly of a novel mutation of KCNJ2 in Andersen’s syndrome. J. Mol. Cell Cardiol. 35, 409–415.

    Article  PubMed  CAS  Google Scholar 

  24. Nashmi, R., Dickinson, M. E., McKinney, S., et al. (2003) Assembly of alpha4beta2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J. Neurosci. 23, 11,554–11,567.

    PubMed  CAS  Google Scholar 

  25. Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713.

    Article  PubMed  CAS  Google Scholar 

  26. Xia, Z. and Liu, Y. (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81, 2395–2402.

    Article  PubMed  CAS  Google Scholar 

  27. Hille, B., (2001) Ion Channels of Excitable Membranes, 3rd ed. Sinauer, Sunderland, MA.

    Google Scholar 

  28. Weitz, D., Ficek, N., Kremmer, E., Bauer, P. J., and Kaupp, U. B. (2002) oSubunit stoichiometry of the CNG channel of rod photoreceptrs. Neuron 36, 881–889.

    Article  PubMed  CAS  Google Scholar 

  29. Zhong, H., Molday, L. L., Molday, R. S., and Yau, K. W. (2002) The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry. Nature 420, 193–198.

    Article  PubMed  CAS  Google Scholar 

  30. Firsov, D., Gautschi, I., Merillat, A. M., Rossier, B. C., and Schild, L. (1998) Theheterotetrameric architecture of the epithelial sodium channel (ENaC) EMBO J. 17, 344–352.

    Article  PubMed  CAS  Google Scholar 

  31. Snyder, P. M., Cheng, C., Prince, L. S., Rogers, J. C., and Welsh, M. J. (1998) Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J. Biol. Chem. 273, 681–684.

    Article  PubMed  CAS  Google Scholar 

  32. Eskandari, S., Snyder, P. M., Kreman, M., Zampighi, G. A., Welsh, M. J., and Wright, E. M. (1999) Number of subunits comprising the epithelial sodium channel. J. Biol. Chem. 274, 27,281–27,286.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Zheng, J. (2006). Spectroscopy-Based Quantitative Fluorescence Resonance Energy Transfer Analysis. In: Stockand, J.D., Shapiro, M.S. (eds) Ion Channels. Methods in Molecular Biology™, vol 337. Humana Press. https://doi.org/10.1385/1-59745-095-2:65

Download citation

  • DOI: https://doi.org/10.1385/1-59745-095-2:65

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-576-7

  • Online ISBN: 978-1-59745-095-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics