Skip to main content

Angiotensinogen Gene Polymorphisms and Hypertension

  • Chapter
Book cover Cardiovascular Genomics

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Hypertension is a serious risk factor for myocardial infarction, heart failure, vascular disease, stroke, and renal failure. Hypertension affects 50 million Americans with a prevalence rate of 25–30% in the adult Caucasian population. The incidence of hypertension and complications resulting from hypertension are even greater in the African-American population. The renin-angiotensin system plays an important role in the regulation of blood pressure, and previous studies have suggested that the angiotensinogen (AGT) gene locus is linked with human essential hypertension. Previous studies have suggested that a single nucleotide polymorphism that converts methionine to threonine at amino acid 235 is associated with hypertension in Caucasian population. This polymorphism is in linkage disequilibrium with A/G polymorphism at −6 position in the promoter of AGT gene. Reporter constructs containing variant A at −6 have increased promoter activity on transient transfection in human liver cells, suggesting that this variant may have increased transcriptional activity. However, this polymorphism is not associated with hypertension in the African-American and Chinese populations. We have found an A/G polymorphism at −217 of the human AGT gene promoter and have shown that frequency of allele A at −217 is significantly increased in the DNA of African-American hypertensive patients. We have also shown that: (a) reporter constructs containing AG gene promoter with nucleoside A at −217 have increased promoter activity on transient transfection; and (b) the C/EBP family of transcription factors and glucocorticoid receptor (GR) bind preferentially to this region of the promoter when nucleoside A is present at −217. In addition, variant −217A is always present with variants −532T, −793A, and −1074T in the human AGT gene promoter. We have also shown that liver enriched transcription factor HNF-3β binds more strongly when nucleoside T is present at −1074. Previous studies have shown that HNF-3β interacts with GR and plays an important role in liver-specific gene expression. These data suggest that AGT haplotype containing −217A, −532T, − 793A, and −1074T may be involved in increased expression of this gene, and may play a role in human hypertension. It will be important to confirm this observation in future human studies and to understand the role of this haplotype in transcriptional regulation using transgenic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luft FC. Hypertension as a complex genetic trait. Semin Nephrol 2002;22:115–126.

    Article  PubMed  CAS  Google Scholar 

  2. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 2001;104: 545–556.

    Article  PubMed  CAS  Google Scholar 

  3. Krushkal J, Ferrell R, Mockrin SC, Turner ST, Sing CF, Boerwinkle E. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 1999;99:1407–1410.

    PubMed  CAS  Google Scholar 

  4. Hunt SC, Ellison RC, Atwood LD, Pankow JS, Province MA, Leppert MF. Genome scans for blood pressure and hypertension: the National Heart, Lung, and Blood Institute Family Heart Study. Hypertension 2002;40: 1–6.

    Article  PubMed  CAS  Google Scholar 

  5. Kristjansson K, Manolescu A, Kristinsson A, et al. Linkage of essential hypertension to chromosome 18q. Hypertension 2002;39:1044–1049.

    Article  PubMed  CAS  Google Scholar 

  6. Rice T, Rankinen T, Chagnon YC, et al. Genomewide linkage scan of resting blood pressure: HERI TAGE Family Study. Health, Risk Factors, Exercise Training, and Genetics. Hypertension 2002;39:1037–1043.

    Article  PubMed  CAS  Google Scholar 

  7. Levy D, DeStefano AL, Larson MG, et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension 2000;36:477–483.

    PubMed  CAS  Google Scholar 

  8. Caulfield M, Munroe P, Pembroke J, et al. Genome-wide mapping of human loci for essential hypertension. Lancet 2003;361:2118–2123.

    Article  PubMed  CAS  Google Scholar 

  9. Kageyama R, Ohkubo H, Nakanishi S. Primary structure of human preangiotensinogen deduced from the cloned cDNA sequence. Biochemistry 1984;23:3603–3609.

    Article  PubMed  CAS  Google Scholar 

  10. Corvol P, Jeunemaitre X. Molecular genetics of human hypertension: role of angiotensinogen. Endocr Rev 1997;18:662–677.

    Article  PubMed  CAS  Google Scholar 

  11. Gould AB, Green D. Kinetics of the human renin and human substrate reaction. Cardiovasc Res 1971;5: 86–89.

    PubMed  CAS  Google Scholar 

  12. Fasola AF, Martz BL, Helmer OM. Renin activity during supine exercise in normotensives and hypertensives. J Appl Physiol 1966;21:1709–1712.

    PubMed  CAS  Google Scholar 

  13. Watt GC, Harrap SB, Foy CJ, et al. Abnormalities of glucocorticoid metabolism and the renin-angiotensin system: a four-corners approach to the identification of genetic determinants of blood pressure. J Hypertens 1992;10: 473–482.

    Article  PubMed  CAS  Google Scholar 

  14. Campbell DJ, Habener JF. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 1986;78:31–39.

    PubMed  CAS  Google Scholar 

  15. Tanimoto K, Sugiyama F, Goto Y, et al. Angiotensinogen-deficient mice with hypotension. J Biol Chem 1994;269:31334–31337.

    PubMed  CAS  Google Scholar 

  16. Kim HS, Krege JH, Kluckman KD, et al. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci USA 1995;92:2735–2739.

    Article  PubMed  CAS  Google Scholar 

  17. Krege JH, Kim HS, Moyer JS, et al. Angiotensin-converting enzyme gene mutations, blood pressures, and cardiovascular homeostasis. Hypertension 1997;29:150–157.

    PubMed  CAS  Google Scholar 

  18. Gaillard I, Clauser E, Corvol P. Structure of human angiotensinogen gene. DNA 1989;8:87–99.

    PubMed  CAS  Google Scholar 

  19. Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992;71:169–180.

    Article  PubMed  CAS  Google Scholar 

  20. Jeunemaitre X, Rigat B, Charru A, Houot AM, Soubrier F, Corvol P. Sib pair linkage analysis of renin gene haplotypes in human essential hypertension. Hum Genet 1992;88:301–306.

    Article  PubMed  CAS  Google Scholar 

  21. Jeunemaitre X, Lifton RP, Hunt SC, Williams RR, Lalouel JM. Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nat Genet 1992;1:72–75.

    Article  PubMed  CAS  Google Scholar 

  22. Bonnardeaux A, Davies E, Jeunemaitre X, et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 1994;24:63–69.

    PubMed  CAS  Google Scholar 

  23. Caulfield M, Lavender P, Newell Price J, Kamdar S, Farrall M, Clark AJ. Angiotensinogen in human essential hypertension. Hypertension 1996;28:1123–1125.

    PubMed  CAS  Google Scholar 

  24. Caulfield M, Lavender P, Newell Price J, et al. Linkage of the angiotensinogen gene locus to human essential hypertension in African Caribbeans. J Clin Invest 1995;96:687–692.

    PubMed  CAS  Google Scholar 

  25. Schmidt S, Sharma AM, Zilch O, et al. Association of M235T variant of the angiotensinogen gene with familial hypertension of early onset. Nephrol Dial Transplant 1995;10:1145–1148.

    PubMed  CAS  Google Scholar 

  26. Hingorani AD, Sharma P, Jia H, Hopper R, Brown MJ. Blood pressure and the M235T polymorphism of the angiotensinogen gene. Hypertension 1996;28:907–911.

    PubMed  CAS  Google Scholar 

  27. Kiema TR, Kauma H, Rantala AO, et al. Variation at the angiotensin-converting enzyme gene and angiotensinogen gene loci in relation to blood pressure. Hypertension 1996;28:1070–1075.

    PubMed  CAS  Google Scholar 

  28. Borecki IB, Province MA, Ludwig EH, et al. Associations of candidate loci angiotensinogen and angiotensin-converting enzyme with severe hypertension: The NHLBI Family Heart Study. Ann Epidemiol 1997;7: 13–21.

    Article  PubMed  CAS  Google Scholar 

  29. Jeunemaitre X, Inoue I, Williams C, et al. Haplotypes of angiotensinogen in essential hypertension. Am J Hum Genet 1997;60:1448–1460.

    Article  PubMed  CAS  Google Scholar 

  30. Schunkert H, Hense HW, Gimenez-Roqueplo AP, et al. The angiotensinogen T235 variant and the use of antihypertensive drugs in a population-based cohort. Hypertension 1997;29:628–633.

    PubMed  CAS  Google Scholar 

  31. Tiret L, Blanc H, Ruidavets JB, et al. Gene polymorphisms of the renin-angiotensin system in relation to hypertension and parental history of myocardial infarction and stroke: the PEGASE study. Projet d’Etude des Genes de l’Hypertension Arterielle Severe a moderee Essentielle. J Hypertens 1998;16:37–44.

    Article  PubMed  CAS  Google Scholar 

  32. Kunz R, Kreutz R, Beige J, Distler A, Sharma AM. Association between the angiotensinogen 235T-variant and essential hypertension in whites: a systematic review and methodological appraisal. Hypertension 1997;30: 1331–1337.

    PubMed  CAS  Google Scholar 

  33. Hata A, Namikawa C, Sasaki M, et al. Angiotensinogen as a risk factor for essential hypertension in Japan. J Clin Invest 1994;93:1285–1287.

    Article  PubMed  CAS  Google Scholar 

  34. Kamitani A, Rakugi H, Higaki J, et al. Association analysis of a polymorphism of the angiotensinogen gene with essential hypertension in Japanese. J Hum Hypertens 1994;8:521–524.

    PubMed  CAS  Google Scholar 

  35. Iwai N, Shimoike H, Ohmichi N, Kinoshita M. Angiotensinogen gene and blood pressure in the Japanese population. Hypertension 1995;25:688–693.

    PubMed  CAS  Google Scholar 

  36. Ishigami T, Umemura S, Tamura K, et al. Essential hypertension and 5′ upstream core promoter region of human angiotensinogen gene. Hypertension 1997;30:1325–1330.

    PubMed  CAS  Google Scholar 

  37. Bloem LJ, Foroud TM, Ambrosius WT, Hanna MP, Tewksbury DA, Pratt JH. Association of the angiotensinogen gene to serum angiotensinogen in blacks and whites. Hypertension 1997;29:1078–1082.

    PubMed  CAS  Google Scholar 

  38. Larson N, Hutchinson R, Boerwinkle E. Lack of association of 3 functional gene variants with hypertension in African Americans. Hypertension 2000;35:1297–1300.

    PubMed  CAS  Google Scholar 

  39. Inoue I, Nakajima T, Williams CS, et al. A nucleotide substitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 1997;99: 1786–1797.

    PubMed  CAS  Google Scholar 

  40. Cvetkovic B, Keen HL, Zhang X, Davis D, Yang B, Sigmund CD. Physiological significance of two common haplotypes of human angiotensinogen using gene targeting in the mouse. Physiol Genomics 2002;11:253–262.

    PubMed  CAS  Google Scholar 

  41. Jain S, Tang X, Narayanan CS, et al. Angiotensinogen gene polymorphism at −217 affects basal promoter activity and is associated with hypertension in African-Americans. J Biol Chem 2002;277:36889–36896.

    Article  PubMed  CAS  Google Scholar 

  42. Choy B, Roberts SG, Griffin LA, Green MR. How eukaryotic transcription activators increase assembly of preinitiation complexes. Cold Spring Harb Symp Quant Biol 1993;58:199–203.

    PubMed  CAS  Google Scholar 

  43. Choy B, Green MR. Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 1993;366:531–536.

    Article  PubMed  CAS  Google Scholar 

  44. Ptashne M. 1997 Albert Lasker Award for Basic Medical Research. Control of gene transcription: an outline. Nat Med 1997;3:1069–1072.

    Article  CAS  Google Scholar 

  45. Rosenfeld MG, Glass CK. Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 2001;276:36,865–36,868.

    Article  PubMed  CAS  Google Scholar 

  46. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000;14:121–141.

    PubMed  CAS  Google Scholar 

  47. LeVan TD, Bloom JW, Bailey TJ, et al. A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J Immunol 2001;167:5838–5844.

    PubMed  CAS  Google Scholar 

  48. Spek CA, Greengard JS, Griffin JH, Bertina RM, Reitsma PH. Two mutations in the promoter region of the human protein C gene both cause type I protein C deficiency by disruption of two HNF-3 binding sites. J Biol Chem 1995; 270:24,216–24,221.

    Article  PubMed  CAS  Google Scholar 

  49. Farzaneh-Far A, Davies JD, Braam LA, et al. A polymorphism of the human matrix gamma-carboxyglutamic acid protein promoter alters binding of an activating protein-1 complex and is associated with altered transcription and serum levels. J Biol Chem 2001;276:32466–32473.

    Article  PubMed  CAS  Google Scholar 

  50. Narayanan CS, Cui Y, Kumar A. DBP binds to the proximal promoter and regulates liver-specific expression of the human angiotensinogen gene. Biochem Biophys Res Commun 1998;251:388–393.

    Article  PubMed  CAS  Google Scholar 

  51. Zhao YY, Zhou J, Narayanan CS, Cui Y, Kumar A. Role of C/A polymorphism at −20 on the expression of human angiotensinogen gene. Hypertension 1999;33:108–115.

    PubMed  CAS  Google Scholar 

  52. Narayanan CS, Cui Y, Zhao YY, Zhou J, Kumar A. Orphan receptor Arp-1 binds to the nucleotide sequence located between TATA box and transcriptional initiation site of the human angiotensinogen gene and reduces estrogen induced promoter activity. Mol Cell Endocrinol 1999;148:79–86.

    Article  PubMed  CAS  Google Scholar 

  53. Yanai K, Nibu Y, Murakami K, Fukamizu A. A cis-acting DNA element located between TATA box and transcription initiation site is critical in response to regulatory sequences in human angiotensinogen gene. J Biol Chem 1996;271:15981–15986.

    Article  PubMed  CAS  Google Scholar 

  54. Cui Y, Narayanan CS, Zhou J, Kumar A. Exon-I is involved in positive as well as negative regulation of human angiotensinogen gene expression. Gene 1998;224:97–107.

    Article  PubMed  CAS  Google Scholar 

  55. Sherman CT, Brasier AR. Role of Signal Transducers and Activators of Transcription 1 and −3 in Inducible Regulation of the Human Angiotensinogen Gene by Interleukin-6. Mol Endocrinol 2001;15:441–457.

    Article  PubMed  Google Scholar 

  56. Narayanan CS, Cui Y, Kumar S, Kumar A. cAMP increases the expression of human angiotensinogen gene through a combination of cyclic AMP responsive element binding protein and a liver specific transcription factor. Mol Cell Biochem 2000;212:81–90.

    Article  PubMed  CAS  Google Scholar 

  57. Yanai K, Hirota K, Taniguchi-Yanai K, et al. Regulated expression of human angiotensinogen gene by hepatocyte nuclear factor 4 and chicken ovalbumin upstream promoter-transcription factor [In Process Citation]. J Biol Chem 1999;274:34,605–34,612.

    Article  PubMed  CAS  Google Scholar 

  58. Brasier AR, Han Y, Sherman CT. Transcriptional regulation of angiotensinogen gene expression. Vitam Horm 1999;57:217–247.

    Article  PubMed  CAS  Google Scholar 

  59. Short MK, Clouthier DE, Schaefer IM, Hammer RE, Magnuson MA, Beale EG. Tissue-specific, developmental, hormonal, and dietary regulation of rat phosphoenolpyruvate carboxykinase-human growth hormone fusion genes in transgenic mice. Mol Cell Biol 1992;12:1007–1020.

    PubMed  CAS  Google Scholar 

  60. Patel YM, Yun JS, Liu J, McGrane MM, Hanson RW. An analysis of regulatory elements in the phosphoenolpyruvate carboxykinase (GTP) gene which are responsible for its tissue-specific expression and metabolic control in transgenic mice. J Biol Chem 1994;269:5619–5628.

    PubMed  CAS  Google Scholar 

  61. Yan SF, Zou YS, Mendelsohn M, et al. Nuclear factor interleukin 6 motifs mediate tissue-specific gene transcription in hypoxia. J Biol Chem 1997;272:4287–4294.

    Article  PubMed  CAS  Google Scholar 

  62. Brinkmeier ML, Gordon DF, Dowding JM, et al. Cell-specific expression of the mouse glycoprotein hormone alpha-subunit gene requires multiple interacting DNA elements in transgenic mice and cultured cells. Mol Endocrinol 1998;12:622–633.

    Article  PubMed  CAS  Google Scholar 

  63. Cvetkovic B, Yang B, Williamson RA, Sigmund CD. Appropriate tissue-and cell-specific expression of a single copy human angiotensinogen transgene specifically targeted upstream of the HPRT locus by homologous recombination. J Biol Chem 2000;275:1073–1078.

    Article  PubMed  CAS  Google Scholar 

  64. Zhu X, Chang YP, Yan D, et al. Associations between hypertension and genes in the renin-angiotensin system. Hypertension 2003;41:1027–1034.

    Article  PubMed  CAS  Google Scholar 

  65. Casari G, Barlassina C, Cusi D, et al. Association of the alpha-adducin locus with essential hypertension. Hypertension 1995;25:320–326.

    PubMed  CAS  Google Scholar 

  66. Bray MS, Krushkal J, Li L, et al. Positional genomic analysis identifies the beta(2)-adrenergic receptor gene as a susceptibility locus for human hypertension. Circulation 2000;101:2877–2882.

    PubMed  CAS  Google Scholar 

  67. Dong Y, Zhu H, Sagnella GA, et al. Association between the C825T polymorphism of the G protein beta3-subunit gene and hypertension in blacks. Hypertension 1999;34:1193–1196.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Kumar, A. (2005). Angiotensinogen Gene Polymorphisms and Hypertension. In: Rai, M.K., Paton, J.F.R., Kasparov, S., Katovich, M.J. (eds) Cardiovascular Genomics. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-883-8:019

Download citation

  • DOI: https://doi.org/10.1385/1-59259-883-8:019

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-400-5

  • Online ISBN: 978-1-59259-883-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics