Skip to main content

Mutagenesis of Viral BACs With Linear PCR Fragments (ET Recombination)

  • Protocol
Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 256))

Abstract

In the last few years, mutagenesis of viruses with large DNA genomes (like the herpesviruses) was simplified by cloning the viral genomes as bacterial artificial chromosomes (BACs) and their subsequent transfer into Escherichia coli (E. coli.). Owing to the high frequency of restriction sites, classical cloning methods for site-directed mutagenesis are not applicable to these large viral BACs. One possibility for mutagenesis is allele replacement by a two-step recombination procedure (see Chapter 18). A much more rapid one-step procedure for introduction of mutations into the viral BACs is homologous recombination between a linear DNA fragment and the viral BAC by double crossing-over (see principle in Fig. 1). Recombination was originally performed with the recombination functions RecE and RecT and, therefore, termed ET recombination or ET mutagenesis (1). Meanwhile, the recombination functions redα (exo) and redβ (bet) from bacteriophage λ have been shown to be a good alternative for RecE and RecT because they are slightly more efficient for double crossing-over. In addition to redα/RecE and redβ/RecT, expression of the exonuclease inhibitor redγ (gam) is necessary to allow mutagenesis in bacteria because the gam protein inhibits bacterial exonucleases and protects the linear recombination fragment from degradation. We found that the viral BACs remained more stable when using the red recombination functions, in contrast to RecE and RecT.

Principle steps of mutagenesis. (A) Preparation of electrocompetent bacterial cells for mutagenesis. Prior to mutagenesis the plasmid pKD46, encoding the recombination functions, is introduced into DH10B containing the viral BAC. In the next step, electrocompetent bacterial cells are prepared by growing the bacteria at 30°C. At the same time, expression of recombinases is induced by addition of 0.1% l-arabinose to the growth medium. (B) Generation and preparation of the DNA recombination fragment. The DNA recombination fragment that contains a selection marker flanked by homologies to the viral genome (gray boxes) is generated by PCR. The resulting DNA fragment is purified and digested with DpnI to remove residual template DNA. (C) Mutagenesis of the viral BAC. For homologous recombination, the DNA recombination fragment is electroporated into the DH10B containing the viral BAC and the expressed recombinases redα, -β, and -γ. After selection with chloramphenicol (Cm) for the BAC and the appropriate antibiotic for the introduced selection marker over night at 37°C, bacteria with the recombinant viral BAC are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, Y., Buchholz, R., Muyrers, J. P., and Stewart, A. F. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128.

    Article  PubMed  CAS  Google Scholar 

  2. Muyrers, J. P., Zhang, Y., and Stewart, A. F. (2001) Techniques: Recombinogenic engineering—new options for cloning and manipulating DNA. TIBS 26, 325–331.

    PubMed  CAS  Google Scholar 

  3. Muyrers, J. P., Zhang, Y., Testa, G., and Stewart, A. F. (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucl. Acids Res. 27, 1555–1557.

    Article  PubMed  CAS  Google Scholar 

  4. Datsenko, K. A. and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  5. Cherepanov, P. P. and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of FLP-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.

    Article  PubMed  CAS  Google Scholar 

  6. Adler, H., Messerle, M., Wagner, M., and Koszinowski, U. H. (2000) Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J. Virol. 74, 6964–6974.

    Article  PubMed  CAS  Google Scholar 

  7. Muyrers, J. P., Zhang, Y., Benes, V., Testa, G., Ansorge, W., and Stewart, A. F. (2000) Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep. 1, 239–243.

    Article  PubMed  CAS  Google Scholar 

  8. Swaminathan, S., Ellis, H. M., Waters, L. S., et al. (2001) Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29, 14–21.

    Article  PubMed  CAS  Google Scholar 

  9. Wagner, M., Jonjic, S., Koszinowski, U. H., and Messerle, M. (1999) Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J. Virol. 8, 7056–7060.

    Google Scholar 

  10. Sambrook, J. and Russel, D. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  11. Yu, D., Ellis, H. M., Lee, E.-C, Jenkins, N. A., Copeland, N. G., and Court, D. L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. PNAS 97, 5978–5983.

    Article  PubMed  CAS  Google Scholar 

  12. Nefedov, M., Williamson, R., and Ioannou, P. A. (2000) Insertion of disease-causing mutations in BACs by homologous recombination in Escherichia coli. Nucl. Acids Res. 28, e79i–e79iv.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wagner, M., Koszinowski, U.H. (2004). Mutagenesis of Viral BACs With Linear PCR Fragments (ET Recombination). In: Zhao, S., Stodolsky, M. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology, vol 256. Humana Press. https://doi.org/10.1385/1-59259-753-X:257

Download citation

  • DOI: https://doi.org/10.1385/1-59259-753-X:257

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-989-6

  • Online ISBN: 978-1-59259-753-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics