Skip to main content

High-Throughput Screens Based on NAD(P)H Depletion

  • Protocol
Directed Enzyme Evolution

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 230))

Abstract

Screening conditions should simulate the final application as closely as possible. This is especially a challenge when chromophore-free (e.g., aliphatic) substrates are used and no simple and reliable high-throughput method for quantitative analysis of the respective reaction product is available. The screening procedure should also be generally applicable for a certain class of enzymes. Generation of “surrogate substrates” by derivatization with chromogenic groups can have a negative effect on enzyme development by directed evolution, e.g., by causing a change in substrate specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narhi, L. O. and Fulco, A. J. (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 261, 7160–7169.

    PubMed  CAS  Google Scholar 

  2. Matson, R. S., Hare, R. S., and Fulco, A. J. (1977) Characteristics of a cytochrome P-450-dependent fatty acid ω-2 hydroxylase from Bacillus megaterium. Biochim. Biophys. Acta 487, 487–494.

    PubMed  CAS  Google Scholar 

  3. Dunigan, D. D., Waters, S. B., and Owen, T. C. (1995) Aqueous soluble tetrazolium/formazan mts as an indicator of NADH-dependent and NADPH dependent dehydrogenase-activity. Biotechniques 19, 640–649.

    PubMed  CAS  Google Scholar 

  4. Thom, S. M., Horobin, R. W., Seidler, E., and Barer, M. R. (1993) Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity. J. Appl. Bacteriol. 74, 433–443.

    PubMed  CAS  Google Scholar 

  5. Mayer, K. M. and Arnold, F. H. (2002) A colorimetric assay to quantify dehydrogenase activity in crude cell lysates. J. Biomol. Screen. 7, 135–140.

    Article  PubMed  CAS  Google Scholar 

  6. Kaplan, N. O., Colowick, S. P., and Barnes, C. C. (1951) Effect of alkali on diphosphopyridine nucleotide. J. Biol. Chem. 191, 461–472.

    PubMed  CAS  Google Scholar 

  7. Lowry, O. H., Roberts, N. R., and Kapphahn, J. I. (1957) The fluorometric measurement of pyridine nucleotides. J. Biol. Chem. 224, 1047–1064.

    PubMed  CAS  Google Scholar 

  8. Lowry, O. H. and Passoneau, J. V. (1972) A Flexible System of Enzymatic Analysis. Academic Press, New York, NY.

    Google Scholar 

  9. Tsotsou, G. E., Cass, A. E. G., and Gilardi, G. (2002) High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants. Biosens. Bioelectron. 17, 119–131.

    Article  PubMed  CAS  Google Scholar 

  10. Schwaneberg, U., Schmidt-Dannert, C., Schmitt, J., and Schmid, R. D. (1999) A continuous spectrophotometric assay for P450 BM3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal. Biochem. 269, 359–366.

    Article  PubMed  CAS  Google Scholar 

  11. Farinas, E. T., Schwaneberg, U., Glieder, A., and Arnold, F. H. (2001) Directed evolution of a cytochrome P450 monooxygenase for alkane oxidation. Adv. Synth. Catal. 343, 601–606.

    Article  CAS  Google Scholar 

  12. Sambrook, J. and Russel, D. W. (2001) Molecular Cloning, A Laboratory Manual. 3 ed., vol. 3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  13. Barnes, H. J. (1996) In Methods Enzymology. vol. 272, (Johnson, E. F. and Waterman, M. R., eds.), Academic Press, San Diego, CA, pp. 3–17.

    Google Scholar 

  14. Zhao, H., Giver, L., Shao, Z., Affholter, A., and Arnold, F. H. (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261.

    Article  PubMed  CAS  Google Scholar 

  15. Glieder, A., Farinas, E., and Arnold, F. H. (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnology, in press.

    Google Scholar 

  16. Schwaneberg, U., Otey, C., Cirino, P. C., Farinas, E., and Arnold, F. H. (2001) Cost-effective whole-cell assay for laboratory evolution of hydroxylases in Escherichia coli. J. Biomol. Screen. 6, 111–117.

    PubMed  CAS  Google Scholar 

  17. Budavari, S. (ed.) (1996) The Merck Index, 12 ed., Merck Research Laboratories, Whitehouse Station, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Glieder, A., Meinhold, P. (2003). High-Throughput Screens Based on NAD(P)H Depletion. In: Arnold, F.H., Georgiou, G. (eds) Directed Enzyme Evolution. Methods in Molecular Biology™, vol 230. Humana Press. https://doi.org/10.1385/1-59259-396-8:157

Download citation

  • DOI: https://doi.org/10.1385/1-59259-396-8:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-286-5

  • Online ISBN: 978-1-59259-396-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics