Skip to main content

High-Level Periplasmic Expression and Purification of scFvs

  • Protocol
Antibody Phage Display

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 178))

Abstract

In the past few years, some of the limitations of monoclonal antibodies (MAbs) as therapeutic agents have been addressed by genetic engineering. Such an approach is particularly suitable because of the domain structure of the Ab molecule, where functional domains carrying antigen (Ag)-binding activities (Fabs or Fvs) or effector functions (Fcs) can be exchanged between Abs. Furthermore, genetically truncated versions of Ab can be produced, ranging in size from the smallest Ag-binding unit or Fv, to Fab′ and F(ab′)2s. To stabilize the association of recombinant VH and VL domains, they have been joined in scFv constructs with a short peptide linker (12)). These small scFvs are particularly interesting for clinical applications (3). They are only one half the size of Fabs and thus have lower retention times in nontarget tissues, more rapid blood clearance, and better tumor penetration. They are also less immunogenic and are amenable to fusions with proteins and peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., et al. (1988) Single-chain antigen-binding proteins. Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  2. Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M. S., Novotny, J., Margolies, M. N., et al. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. NatlAcad. Sci. USA 85, 5879–5883.

    Article  CAS  Google Scholar 

  3. Huston, J. S., McCartney, J., Tai, M. S., Mottola-Hartshorn, C., Jin, D., Warren, R., Keck, P., and Oppermann, H. (1993) Medical applications of single-chain antibodies. Int. Rev. Immunol. 10, 195–217.

    Article  PubMed  CAS  Google Scholar 

  4. Kipriyanov, S. M. and Little, M. (1999) Generation of recombinant antibodies. Mol. Biotechnol. 12, 173–201.

    Article  PubMed  CAS  Google Scholar 

  5. Better, M., Chang, C. P., Robinson, R. R., and Horwitz, A. H. (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science 240, 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  6. Skerra, A. and Plückthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038–1041.

    CAS  Google Scholar 

  7. Whitlow, M. and Filpula, D. (1991) Single-chain Fv proteins and their fusion proteins. Methods: Companion Methods Enzymol. 2, 97–105.

    Article  CAS  Google Scholar 

  8. Kipriyanov, S. M., Dübel, S., Breitling, F., Kontermann, R. E., and Little, M. (1994) Recombinant single-chain Fv fragments carrying C-terminal cysteine residues: production of bivalent and biotinylated miniantibodies. Mol. Immunol. 31, 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  9. Plückthun, A. (1994) Antibodies from Escherichia coli, in Handbook of Experimental Pharmacology, vol. 113: The Pharmacology of Monoclonal Antibodies(Rosenberg, M. and Moore, G. P., eds.) Springer-Verlag, Berlin, Heidelberg, pp. 269–315.

    Google Scholar 

  10. Hockney, R. C. (1994) Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol. 12, 456–463.

    CAS  Google Scholar 

  11. Knappik, A. and Plückthun, A. (1995) Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 8, 81–89.

    Article  PubMed  CAS  Google Scholar 

  12. Skerra, A. and Plückthun, A. (1991) Secretion and in vivo folding of the Fab fragment of the antibody McPC603 in Escherichia coli: influence of disulphides and cis-prolines. Protein Eng. 4, 971–979.

    Article  PubMed  CAS  Google Scholar 

  13. Kipriyanov, S. M., Moldenhauer, G., and Little, M. (1997) High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J. Immunol. Methods 200, 69–77.

    Article  PubMed  CAS  Google Scholar 

  14. Kipriyanov, S. M., Moldenhauer, G., Schuhmacher, J., Cochlovius, B., von der Lieth, C. W., Matys, E. R. and Little, M. (1999) Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J. Mol. Biol. 293, 41–56.

    Article  PubMed  CAS  Google Scholar 

  15. Skerra, A., Pfitzinger, I., and Plückthun, A. (1991) The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Biotechnology 9, 273–278.

    Article  PubMed  CAS  Google Scholar 

  16. Casey, J. L., Keep, P. A., Chester, K. A., Robson, L., Hawkins, R. E., and Begent, R. H. (1995) Purification of bacterially expressed single chain Fv antibodies for clinical applications using metal chelate chromatography. J. Immunol. Methods 179, 105–116.

    Article  PubMed  CAS  Google Scholar 

  17. Kipriyanov, S. M., Moldenhauer, G., Strauss, G., and Little, M. (1998) Bispecific CD3 x CD 19 diabody for T cell-mediated lysis of malignant human B cells. Int. J. Cancer 77, 763–772.

    Article  PubMed  CAS  Google Scholar 

  18. Müller, K. M., Arndt, K. M., Bauer, K., and Plückthun, A. (1998) Tandem immobilized metal-ion affinity chromatography/immunoaffinity purification of His-tagged proteins: evaluation of two anti-His-tag monoclonal antibodies. Anal. Biochem. 259, 54–61.

    Article  PubMed  Google Scholar 

  19. Schulze, R. A., Kontermann, R. E., Queitsch, I., Dübel, S., and Bautz, E. K. (1994) Thiophilic adsorption chromatography of recombinant single-chain antibody fragments. Anal. Biochem. 220, 212–214.

    Article  PubMed  CAS  Google Scholar 

  20. Müller, K. M., Arndt, K. M., and Plückthun, A. (1998) A dimeric bispecific miniantibody combines two specificities with avidity. FEBS Let. 432, 45–49.

    Article  Google Scholar 

  21. Horn, U., Strittmatter, W., Krebber, A., Knupfer, U., Kujau, M., Wenderoth, R., et al. (1996) High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. Appl. Microbiol. Biotechnol. 46, 524–532.

    Article  PubMed  CAS  Google Scholar 

  22. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  23. Le Gall, F., Kipriyanov, S. M., Moldenhauer, G., and Little, M. (1999) Di-, triand tetrameric single chain Fv antibody fragments against human CD 19: effect of valency on cell binding. FEBS Let. 453, 164–168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Kipriyanov, S.M. (2002). High-Level Periplasmic Expression and Purification of scFvs. In: O’Brien, P.M., Aitken, R. (eds) Antibody Phage Display. Methods in Molecular Biology™, vol 178. Humana Press. https://doi.org/10.1385/1-59259-240-6:333

Download citation

  • DOI: https://doi.org/10.1385/1-59259-240-6:333

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-906-3

  • Online ISBN: 978-1-59259-240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics