Skip to main content

How to Close a Gap Junction Channel

Efficacies and Potencies of Uncoupling Agents

  • Protocol
Connexin Methods and Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 154))

Abstract

There are several reasons that one might want to selectively do away with gap junction channels. Of critical importance to electrophysiologists, coupling interferes with isopotentiality, a requirement for voltage-clamping cells. Second, by measuring the function of cell groups or tissues in which gap junctions have been eliminated, it may be possible to infer the roles that gap junctions normally play (“negative” physiology: refs. 15). Finally, there are pathological conditions in which gap junction overexpression might be an underlying cause (or problematic consequence) of the pathology, and therefore gap junction blockers might be therapeutically useful. Despite the desirability of finding agents that would specifically block intercellular communication, however, there is as yet no “silver bullet” that will close gap junction channels without side effects and, as considered later, some of the most commonly used gap junction blockers do not totally close the channels, but only partially impair their conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nicholson S. M. and Bruzzone R. (1997) Gap junctions: getting the message through. Curr. Biol. 7, R340–344.

    PubMed  CAS  Google Scholar 

  2. Scherer S. S., Xu Y. T., Nelles E., Fischbeck K., Willecke K., and Bone L. J. (1998) Connexin32-null mice develop demyelinating peripheral neuropathy. Glia 24, 8–20.

    PubMed  CAS  Google Scholar 

  3. White T. W. and Paul D. L. (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61, 283–310.

    PubMed  CAS  Google Scholar 

  4. Lo C. W. (1999) Genes, gene knockouts, and mutations in the analysis of gap junctions. Dev. Genet. 24, 1–4.

    PubMed  CAS  Google Scholar 

  5. Spray D. C., Kojima T., Scemes E., Suadicani S. O., and Gao Y. (1999) Negative physiology: what connexin-deficient mice reveal about the functional roles of individual gap junction proteins, in Biophysics of Gap Junction Channels (Peracchia C. ed.), Academic Press, Orlando.

    Google Scholar 

  6. Tahara Y. (1910) Uber das tetrodongift. Biochem. Z. 10, 255–275.

    Google Scholar 

  7. Narahashi T., Deguchi T., Urakawa N., and Okhubo Y. (1960) Stabilization and rectification of muscle fiber membrane by tetrodotoxin. Am. J. Physiol. 198, 934–938.

    PubMed  CAS  Google Scholar 

  8. Nakamura Y., Nakajima S., and Grundfest H. (1965) Analysis of spike electrogenesis and depolarizing K inactivation in the electroplaques of Electrophorus electricus. J. Gen. Physiol. 49, 321–349.

    PubMed  CAS  Google Scholar 

  9. Narahashi T., Haas H. G., and Therrien E. F. (1967) Saxitoxin and tetrodotoxin: Comparison of nerve blocking mechanism. Science 157, 1441–1442.

    PubMed  CAS  Google Scholar 

  10. Bernard M. C. (1857) Leçons sur les Effets des Substances Toxiques et Médicamenteuses. Ballière et Fils, Paris, pp. 238–306.

    Google Scholar 

  11. Manalis R. S. (1977) Voltage-dependent effect of curare at the frog neuromuscular junction. Nature 267, 366–368.

    PubMed  CAS  Google Scholar 

  12. Katz B. and Miledi R. (1978) A re-examination of curare action at the motor endoplate. Proc. Natl. Soc. Lond. (Biol.) 203, 119–133.

    CAS  Google Scholar 

  13. Colquhoun D., Dreyer F., and Sheridan R. E. (1979) The actions of tubocurarine at the frog neuromuscular junction. J. Physiol. 293, 247–284.

    PubMed  CAS  Google Scholar 

  14. Lee C. Y. (1972) Chemistry and pharmacology of polypeptide toxins in snake venoms. Annu. Rev. Pharmacol. 12, 265–286.

    PubMed  CAS  Google Scholar 

  15. Mathews-Bellinger J. and Salpeter M. M. (1978) Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J. Physiol. 279, 197–213.

    Google Scholar 

  16. Albuquerque E. X., Barnard E. A., Porter C. W., and Warnick J. E. (1974) The density of acetylcholine receptors and their sensitivity in the postsynaptic membrane of muscle endplates. Proc. Natl. Acad. Sci. USA 71, 2818–2822.

    PubMed  CAS  Google Scholar 

  17. Hagiwara S. and Saito N. (1959) Voltage-current relations in nerve cell membrane of Onchidium verruculatum. J. Physiol. 148, 161–179.

    PubMed  CAS  Google Scholar 

  18. McCleskey E. W., Fox A. P., Feldman D. H., Cruz L. J., Olivera M., Tsien R., and Yoshikami D. (1987) □-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl. Acad. Sci. USA 84 84,4328–4331.

    Google Scholar 

  19. Aosaki T. and Kasai H. (1989) Characterization of two kinds of high-voltage-activated Ca-channel currents in chick sensory neurons, differential sensitivity to dihydropyridines and co-conotoxin GVIA. Pflügers Arch. 414, 150–156.

    PubMed  CAS  Google Scholar 

  20. Plummer M. R.D., Logothetis E., and Hess P. (1989) Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2, 1453–1463.

    PubMed  CAS  Google Scholar 

  21. Turin L. and Warner A. E. (1980) Intracellular pH in early Xenopus embryos: its effects on current flow between glastomeres. J. Physiol. 300, 489–504.

    PubMed  CAS  Google Scholar 

  22. Spray D. C., Harris A. L., and Bennett M. V. L. (1981) Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211, 712–715.

    PubMed  CAS  Google Scholar 

  23. Délèze J. and Hervé J. C. (1983) Effect of several uncouplers to cell-to-cell communication on gap junction morphology in mammalian heart. J. Membr. Biol. 74, 203–215.

    PubMed  Google Scholar 

  24. Johnston M. F., Simon S. A., and Ramon F. (1980) Interactions of anesthetics with electrical synapses. Nature 286, 498–500.

    PubMed  CAS  Google Scholar 

  25. Terrar D. A. and Victory J. G. G. (1988) Influence of halothane on electrical coupling in cell pairs isolated from guinea-pig ventricle. Br. J. Pharmacol. 94, 509–514.

    PubMed  CAS  Google Scholar 

  26. Burt J. M. and Spray D. C. (1989) Volatile anesthetics block intercellular communication between neonatal rat myocardial cells. Circ. Res. 65, 829–837.

    PubMed  CAS  Google Scholar 

  27. Davidson J. S., Baumgarten I. M., and Harley E. H. (1986) Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochem. Biophys. Res. Comm. 134, 29–36.

    PubMed  CAS  Google Scholar 

  28. Davidson J. S. and Baumgarten I. M. (1988) Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J. Pharmacol. Exp. Ther. 246, 1104–1107.

    PubMed  CAS  Google Scholar 

  29. Hofer A. and Dermietzel R. (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24, 141–154.

    PubMed  CAS  Google Scholar 

  30. Dahl G., Werner R., Levine E., and Rabadan-Diehl G. (1992) Mutational analysis of gap junction formation. Biophys. J. 62, 172–182.

    PubMed  CAS  Google Scholar 

  31. Dahl G., Nonner W., and Werner R. (1994) Attempts to define functional domains of gap junction proteins with synthetic peptides. Biophys. J. 67, 1816–1822.

    PubMed  CAS  Google Scholar 

  32. Warner A., Clements D. K., Parikh S., Evans W. H., and DeHaan R. L. (1995) Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J. Physiol. 488, 721–728.

    PubMed  CAS  Google Scholar 

  33. Chaytor A. T., Evans W. H., and Griffith T. M. (1998) Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. J. Physiol. 508, 561–573.

    PubMed  CAS  Google Scholar 

  34. Kwak B. R. and Jongsma H. J. (1999) Selective inhibition of gap junction channel activity by synthetic peptides. J. Physiol. 516, 679–685.

    PubMed  CAS  Google Scholar 

  35. Narahashi T., Aistrup G. L., Lindstrom J. M., Marszalee W., Nagata K., Wang F., and Yeh J. Z. (1998) Ion channel modulation as the basis for general anesthesia. Toxicol. Lett. 100–101, 185–191.

    PubMed  Google Scholar 

  36. Banks M. I. and Pearce R. A. (1999) Dual actions of volatile anesthetics on GABA(A) IPSCs: dissociation of blocking and prolonged effects. Anesthesiology 90, 12–134.

    Google Scholar 

  37. Jones M. V. and Harrison N. L. (1993) Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampus neurons. J. Neurophysiol. 70, 1339–1349.

    PubMed  CAS  Google Scholar 

  38. Krnjevic K. (1992) Cellular and synaptic actions of general anaesthetics. Gen. Pharmacol. 23, 965–975.

    PubMed  CAS  Google Scholar 

  39. Scholz A., Appel N., and Vogel W. (1998) Two types of TTX-resistant and one TTX-sensitive Na+ channel in rat dorsal root ganglion neurons and their blockade by halothane. Eur. J. Neurosci. 10, 2547–2556.

    PubMed  CAS  Google Scholar 

  40. Sirois J. E., Pancrazio J. J., III, C. L., and Bayliss D. A. ( 1998) Multiple ionic mechanisms mediate inhibition of rat motoneurons by inhalation anaesthetics. J. Physiol. 512, 851–862.

    PubMed  CAS  Google Scholar 

  41. Dildy-Mayfield J. E., Eger E. I. 2nd, and Harris R. A. ( 1996) Anesthetics produce subunit-selective actions on glutamate receptors. J. Pharmacol. Exp. Ther 276, 1058–1065.

    PubMed  CAS  Google Scholar 

  42. Minami K., Wick M. J., Stern-Bach Y., Dildy-Mayfield J. E., Brozowski S. J., Gonzales E. L., Trudell J. R., and Harris R. A. (1998) Sites of volatile anesthetic action on kainate (glutamate receptor 6) receptors. J. Biol. Chem. 273, 8248–8255.

    PubMed  CAS  Google Scholar 

  43. Beirne J. P., Pearlstein R. D., Massey G. W., and Warner D. S. (1998) Effect of halothane in cortical cell cultures exposed to N-methyl-D-aspartate. Neurochem. Res. 23, 17–23.

    PubMed  CAS  Google Scholar 

  44. Nietgen G. W., Honemann C. W., Chan C. K., Kamatchi G. L., and Durieux M. E. (1998) Volatile anesthetics have differential effects on recombinant m1 and m3 muscarinic acetylcholine receptor function. Br. J. Anaesth. 81, 569–577.

    PubMed  CAS  Google Scholar 

  45. Minami K., Vanderah T. W., Minami M., and Harris R. A. (1997) Inhibitory effects of anesthetics and ethanol on muscarinic receptors expressed in Xenopus oocytes. Eur. J. Pharmacol. 339, 237–244.

    PubMed  CAS  Google Scholar 

  46. Patel A. J., Honore E., Lesage F., Fink M., Romey G., and Lazdunski M. (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat. Neurosci. 2, 422–426.

    PubMed  CAS  Google Scholar 

  47. Lopes C. M., Franks N. P., and Lieb W. R. (1998) Actions of general anaesthetics and arachidonic pathway inhibitors on K+ currents activated by volatile anaesthetics an FMRFamide in molluscan neurones. Br. J. Pharmacol. 125, 309–318.

    PubMed  CAS  Google Scholar 

  48. Honemann C. W., Nietgen G. W., Podranski T., Chan C. K., and Durieux M. E. (1998) Influence of volatile anesthetics on thromboxane A2 signaling. Anesthesiology 88, 440–451.

    PubMed  CAS  Google Scholar 

  49. Abou Hashieh I., Mathieu S., Besson F., and Gerolami A. (1996) Inhibition of gap junction intercellular communications of cultured rat hepatocytes by ethanol: role of ethanol metabolism. J. Hepatol. 24, 360–367.

    PubMed  CAS  Google Scholar 

  50. Weingart R. and Bukauskas F. F. (1998) Long-chain n-alkanols and arachidonic acid interfere with the Vm-sensitivie gating mechanism of gap junction channels. Pflügers Arch. 435, 310–319.

    PubMed  CAS  Google Scholar 

  51. Spray D. C. and Bennett M. V. L. (1985) Physiology and pharmacology of gap junctions. Annu. Rev. Physiol. 47, 281–303.

    PubMed  CAS  Google Scholar 

  52. Burt J. M. (1990) Modulation of cardiac gap junction channel activity by the membrane lipid environment. Biophysics of Gap Junction Channels, C. Peracchia (ed)., CRC Press, pp. 75–93.

    Google Scholar 

  53. Walker B. R. and Edwards C. R. (1994) Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess. Endocrinol. Metab. Clin. North Am. 23, 359–377.

    PubMed  CAS  Google Scholar 

  54. Sewell K. J., Shirley D. G., Michael A. E., Thompson A., Norgate D. P., and Unwin R. J. (1998) Inhibition of renal 11-beta-hydroxysteroid dehydrogenase in vivo by carbenoxolone in the rat and its relationship to sodium excretion. Clin. Sci. 95, 435–443.

    PubMed  CAS  Google Scholar 

  55. Monder C., Stewart P. M., Lakshmi V., Valentino R., Burt D., and Edwards C. R. (1989) Licorice inhibits corticosteroid 11-beta-dehydrogenase of rat kidney and liver: in vivo and in vitro studies. Endocrinology 125, 1046–1053.

    PubMed  CAS  Google Scholar 

  56. Fraser P. M., Doll R., Langman M. J., Misiewicz J. J., and Shawdon H. H. (1972) Clinical trial of a new carbenoxolone analogue (BX24), zinc sulphate, and vitamin A in the treatment of gastric ulcer. Gut 13, 459–463.

    PubMed  CAS  Google Scholar 

  57. Schmilinksy-Fluri G., Valiunas V., Willi M., and Weingart R. (1997) Modulation of cardiac gap junctions: the mode of action of arachidonic acid. J. Mol. Cell. Cardiol. 29, 1703–1713.

    Google Scholar 

  58. Boger D. L., Patterson J. E., and Jin Q. (1998) Structural requirements for 5-HT2A and 5-HT1A serotonin potentiation by the biologically active lipid oleamide. Proc. Natl. Acad. Sci. USA 95, 4102–4107.

    PubMed  CAS  Google Scholar 

  59. Yost C. S., Hampson A. J., Leonoudakis D., Koblin D. D., Bornheim L. M., and Gray A. T. (1998) Oleamide potentiates benzodiazepine-sensitive gammaaminobutyric acid receptor activity but does not alter minimum alveolar anesthetic concentration. Anesth. Analg. 86, 1294–1300.

    PubMed  CAS  Google Scholar 

  60. Lees G., Edwards M. D., Hassoni A. A., Ganellin C. R., and Galanakis D. (1998) Modulation of GABA(A) receptors and inhibitory synaptic currents by the endogenous CNS sleep regulator cis-9,10-octadecenoamide (cOA). Br. J. Pharmacol. 124, 873–882.

    PubMed  CAS  Google Scholar 

  61. Thomas E. A., Carson M. J., and Sutcliffe J. G. (1998) Oleamide-induced modulation of 5-hydroxytryptamine receptor-mediated signaling. Ann. NY Acad. Sci. 861, 183–189.

    PubMed  CAS  Google Scholar 

  62. Boger D. L., Patterson J. E., Guan X., Cravatt B. F., Lerner R. A., and Gilula N. B. (1998) Chemical requirements for inhibition of gap junction communication by the biologically active lipid oleamide. Proc. Natl. Acad. Sci. USA 95, 4810–4815.

    PubMed  CAS  Google Scholar 

  63. Guan X., Cravatt B. F., Ehring G. R., Hall J. E., Boger D. L., Lerner R. A., and Gilula N. B. (1997) The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. J. Cell. Biol. 139, 1785–1792.

    PubMed  CAS  Google Scholar 

  64. Spray D. C., Harris A. L., and Bennett M. V. L. (1979) Voltage dependence of junctional conductance in early amphibian embryos. Science 204, 432–434.

    PubMed  CAS  Google Scholar 

  65. Verselis V., White R. L., Spray D. C., and Bennett M. V. (1986) Gap junctional conductance and permeability are linearly related. Science 234, 461–464.

    PubMed  CAS  Google Scholar 

  66. Merrifield R. (1963) Solid-phase peptide synthesis. 1: The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154.

    CAS  Google Scholar 

  67. Bastide B., Jarry-Guichard T., Briand J. P., Deleze J., and Gros D. (1996) Effect of antipeptide antibodies directed against three domains of connexin43 on the gap junction permeability of cultured heart cells. J. Membr. Biol. 150, 243–253.

    PubMed  CAS  Google Scholar 

  68. Vrionis F. D., Wu J. K., Qi P., Waltzman M., Cherington V. S., and Spray D. C. (1997) The bystander effect exerted by tumor cells expressing the herpes simplex virus thymidine kinase (HSVtk) gene is dependent on connexin expression and cell communication via gap junctions. Gene Ther. 4, 577–585.

    PubMed  CAS  Google Scholar 

  69. Elshami A. A., Saavedra A., Zhang H., Kucharczuk J. C., Spray D. C., Fishman G. I., Amin K. M., Kaiser L. R., and Albelda S. M. (1996) Gap junctions play a role in the “bystander effect” of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. Gene Ther. 3, 85–92.

    PubMed  CAS  Google Scholar 

  70. Andrade-Rozental A. F., Rozental R., Hopperstad M. G., Wu J. K., Vrionis F., and Spray D. C. (2000) Gap junctions: the “kiss of death” and the “kiss of life”. Brain Res. Rev. 32, 308–315.

    PubMed  CAS  Google Scholar 

  71. Hermans M. M., Kortekaas P., Jongsma H. J. and Rook M. B. (1995) pH sensitivity of the cardiac gap junction proteins, connexin 34 and 43. Pflügers Arch. 431, 138–140.

    PubMed  CAS  Google Scholar 

  72. Morley G. E., Taffet S. M., and Delmar M. (1996) Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys. J. 70, 1294–1302.

    PubMed  CAS  Google Scholar 

  73. Spray D. C., Harris A. L., and Bennett M. V. (1981) Equilibrium properties of a voltage-dependent junctional conductance. J. Gen. Physiol. 77, 77–93.

    PubMed  CAS  Google Scholar 

  74. Spray D. C. and Burt J. M. (1990) Structure-activity relations of the cardiac gap junction channel. Am. J. Physiol. 258, LC195–C205.

    Google Scholar 

  75. Ek-Vitorin J. F., Calero G., Morley G. E., Coombs W., Taffet S. M., and Delmar M. (1996) pH regulation of connexin43: molecular analysis of the gating particle. Biophys. J. 7, 1273–1284.

    Google Scholar 

  76. Wang X. G. and Peracchia C. (1997) Positive charges of the initial C-terminus domain of Cx32 inhibit gap junction gating sensitivity to CO2. Biophys. J. 73, 798–806.

    PubMed  CAS  Google Scholar 

  77. Wang X. G. and Peracchia C. (1998) Chemical gating of heteromeric and heterotypic gap junction channels. J. Membr. Biol. 162, 169–176.

    PubMed  CAS  Google Scholar 

  78. Bukauskas F. F., Elfgang C., Willecke K., and Weingart R. (1995) Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells. Biophys. J. 68, 2289–2298.

    PubMed  CAS  Google Scholar 

  79. Moreno A. P., Rook M. B., Fishman G. I., and Spray D. C. (1994) Gap junction channels: distinct voltage-sensitive and insensitive conductance states. Biophys. J. 67, 113–119.

    PubMed  CAS  Google Scholar 

  80. Srinivas M., Costa M., Gao Y., Fort A., Fishman G. I., and Spray D. C. (1999) Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J. Physiol. 517, 673–689.

    PubMed  CAS  Google Scholar 

  81. Suchyna T. M., Xu L. X., Gao F., Fourtner C. R., and Nicholson B. J. (1993) Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature 365, 847–849.

    PubMed  CAS  Google Scholar 

  82. Verselis V. K., Ginter C. S. and Bargiello T. A. (1994) Opposite voltage gating polarities of two closely related connexins. Nature 368, 348–351.

    PubMed  CAS  Google Scholar 

  83. Bukauskas F. F. and Peracchia C. (1997) Two distinct gating mechanisms in gap junction channels: CO2-sensitive and voltage-sensitive. Biophys. J. 72, 2137–2142.

    PubMed  CAS  Google Scholar 

  84. Engelmann T. W. (1877) Ueber die Leitung der Erregung im Herzmuskel. Pflügers Arch. 11, 465–480.

    Google Scholar 

  85. De Mello W. C., Motta G. E., and Chapeau M. ( 1969) A study on the healing-over of myocardial cells of toads. Circ Res. 24, 475–487.

    PubMed  Google Scholar 

  86. Deleze J. (1970) The recovery of resting potential and input resistance in sheep heart injured by knife or laser. J. Physiol. 208, 548–562.

    Google Scholar 

  87. De Mello W. C. ( 1983) The influence of pH onthe healing-over of mammalian cardiac muscle. J. Physiol. 339, 299–307.

    PubMed  Google Scholar 

  88. Spray D. C., Stern J. H., Harris A. L., and Bennett M. V.L. (1982) Gap junctional conductance: comparison of sensitivities to H and Ca ions. Proc. Natl. Acad. Sci. USA 79, 441–445.

    PubMed  CAS  Google Scholar 

  89. Noma A. and Tsuboi N. (1987) Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea pig. J. Physiol. 382, 193–211.

    PubMed  CAS  Google Scholar 

  90. Firek L. and Weingart R. (1995) Modification of gap junction conductance by divalent cations and protons in neonatal rat heart cells. J. Mol. Cell. Cardiol. 27, 1633–1643.

    PubMed  CAS  Google Scholar 

  91. White R. L., Doeller J. E., Verselis V. K., and Wittenberg B. A. (1990) Gap junctional conductance between pairs of ventricular myocytes is modulated synergistically by H+ and Ca++. J. Gen. Physiol. 95, 1061–1075.

    PubMed  CAS  Google Scholar 

  92. Peracchia C. and Bernardini G. (1984) Gap junction structure and cell-to-cell coupling regulation: is there a calmodulin involvement? Fed. Proc. 43, 2681–2691.

    PubMed  CAS  Google Scholar 

  93. Peracchia C. and Wang X. C. (1997) Connexin domains relevant to the chemical gating of gap junction channels. Braz. J. Med. Biol. Res. 30, 577–590.

    PubMed  CAS  Google Scholar 

  94. Yamamoto Y., Fukuta H., Nakahira Y., and Suzuki H. (1998) Blockade by 18-p-glycyrrhetinic acid of intercellular electrical coupling in guinea pig arterioles. J. Physiol. 5112, 501–508.

    PubMed  CAS  Google Scholar 

  95. Eugenin E. A., Gonzalez H., Saez C. G., and Saez J. C. (1998) Gap junctional communication coordinates vasopressin-induced glycogenolysis in rat hepatocytes. Am. J. Physiol. 274, G1109–G1116.

    PubMed  CAS  Google Scholar 

  96. Goldberg G. S., Moreno A. P., Bechberger J. F., Hearn S. S., Shivers R. R., MacPhee D. J., Zhang Y.-C., and Naus C. G. (1996) Evidence that disruption of connexon partical arrangements in gap junction plaques is associated with inhibition of gap junctional communication by a glycyrrhetinic acid derivative. Exp. Cell Res. 222, 48–53.

    PubMed  CAS  Google Scholar 

  97. Seseke F. G., Gardemann A., and Jungermann K. (1992) Signal propagation via gap junctions, a key step in the regulation of liver metabolism by the sympathetic hepatic nerves. FEBS Lett. 301, 265–270.

    PubMed  CAS  Google Scholar 

  98. Guan X., Wilson S., Keith K., Schlender K., and Ruch R. J. (1996) Gap-junction disassembly and connexin43 dephosphorylation induced by 18-β-glycyrrhetinic acid. Mol. Carcinog. 16, 157–164.

    PubMed  CAS  Google Scholar 

  99. Munari-Silem Y., Lebrethon M. C., Morand I., Rousset B., and Saez J. M. (1995) Gap junction-mediated cell-to-cell communication in bovine and human adrenal cells. A process whereby cells increase their responsiveness to physiological corticotropin concentrations. J. Clin. Invest. 95, 1429–1439.

    PubMed  CAS  Google Scholar 

  100. D’Andrea P., and Vittur F. (1996) Gap junctions mediate intercellular calcium signalling in cultured articular chondrocytes. Cell Calcium 20, 389–397.

    CAS  Google Scholar 

  101. Frame M. K. and DeFeijter W. (1997) Propagation of mechanically induced intercellular calcium waves via gap junctions and ATP receptors in rat liver epithelial cells. Exp. Cell. Res. 230, 197–207.

    PubMed  CAS  Google Scholar 

  102. Martin W., Zempel G., Hulser D., and Willecke K. (1991) Growth inhibition of oncogene-transformed rat fibroblasts by cocultured normal cells: relevance of metabolic cooperation mediated by gap junctions. Cancer Res. 51, 5348–5354.

    PubMed  CAS  Google Scholar 

  103. Burt J. M. and Spray D. C. (1988) Single channel events and gating behavior of the cardiac gap junction channel. Proc. Natl. Acad. Sci. USA 85, 3431–3434.

    PubMed  CAS  Google Scholar 

  104. Niggli E., Rudisuli A., Maurer P., and Weingart R. (1989) Effects of general anesthetics on current flow across membranes in guinea pig myocytes. Am. J. Physiol. 256, C273–281.

    PubMed  CAS  Google Scholar 

  105. Takens-Kwak B. R., Jongsma H. J., Rook M. B., and Van Ginneken A. C. ( 1992) Mechanism of heptanol-induced uncoupling of cardiac gap junctions: a perforated patch-clamp study. Am. J. Physiol. 262, C1531–C1538.

    PubMed  CAS  Google Scholar 

  106. Bastiaanse E. M., Jongsma H. J., van der Laarse A., and Takens-Kwak B. R. ( 1993) Heptanol-induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol-rich domains. J. Membr. Biol. 136, 135–145.

    PubMed  CAS  Google Scholar 

  107. Burt J. M. (1989) Uncoupling of cardiac cells by doxl stearic acids: specificity and mechanism of action. Am. J. Physiol. 256, C913–924.

    PubMed  CAS  Google Scholar 

  108. Franks N. P. and Lieb W. R. (1994) Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614.

    PubMed  CAS  Google Scholar 

  109. Lerner R. A. (1997) A hypothesis about the endogenous analogue of general anesthesia. Proc. Natl. Acad. Sci. USA 94, 13,375–13,377.

    PubMed  CAS  Google Scholar 

  110. Richter J. A. and Holtman J. R., Jr. ( 1982) Barbiturates: their in vivo effects and potential biochemical mechanisms. Prog. Neurobiol. 18, 275–319.

    PubMed  CAS  Google Scholar 

  111. Andrews P. R. and Mark L. C. (1982) Structural specificity of barbiturates and related drugs. Anesthesiology 57, 314–320.

    PubMed  CAS  Google Scholar 

  112. Chaytor R. T., Evans W. H., and Griffith T. M. (1997) Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J. Physiol. 503, 99–110.

    PubMed  CAS  Google Scholar 

  113. Boitano S., Dirksen E. R., and Evans W. H. (1998) Sequence-specific antibodies to connexins block intercellular calcium signaling through gap junctions. Cell Calcium 23, 1–9.

    PubMed  CAS  Google Scholar 

  114. Moore L. K. and Burt J. M. (1994) Selective block of gap junction channel expression with connexin-specific antisense oligodeoxynucleotides. Am. J. Physiol. 267, C1371–1380.

    PubMed  CAS  Google Scholar 

  115. Makarenkova H. and Patel K. (1999) Gap junction signalling through connexin-43 is required for chick limb development. Dev. Biol. 207, 380–392.

    PubMed  CAS  Google Scholar 

  116. Becker D. L., McGonnel I., Makarenkova H. P., Patel K., Tickle C., Lorimer J., and Green C. R. (1999) Roles for alpha 1 connexin in morphogenesis of chick embryos revealed using a novel antisense approach. Dev. Genet. 24, 33–42.

    PubMed  CAS  Google Scholar 

  117. Minkoff R., Bales E. S., Kerr C. A., and Struss W. E. (1999) Antisense oligonecleotide blockade of connexin expression during embryonic bone formation: evidence of functional compensation within a multigene family. Dev. Genet. 24, 43–56.

    PubMed  CAS  Google Scholar 

  118. Goliger J. A., Bruzzone R., White T. W. and Paul D. L. (1996) Dominant inhibition of intercellular communication by two chimeric connexins. Clin. Exp. Pharmacol. Physiol. 23, 1062–1067.

    PubMed  CAS  Google Scholar 

  119. Paul D. L., Yu K., Bruzzone R., Gimlich R. L., and Goodenough D. A. (1995) Expression of a dominant negative inhibitor of intercellular communication in the early Xenopus embryo causes delamination and extrusion of cells. Development 121, 371–381.

    PubMed  CAS  Google Scholar 

  120. Sullivan R. and Lo C. W. (1995) Expression of a connexin 43/beta-galactosidase fusion protein inhibits gap junctional communication in NIH3T3 cells. J. CellBiol. 130, 419–429.

    CAS  Google Scholar 

  121. Dermietzel R. and Spray D. C. (1993) Gap junctions in the brain: where, what type, how many and why? Trends Neurosci. 16, 186–192.

    PubMed  CAS  Google Scholar 

  122. Giaume C., and McCarthy K. D. (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci. 19, 319–325.

    PubMed  CAS  Google Scholar 

  123. Wolff J. R., Stuke K., Missler M., Tytko H., Schwarz P., Rohlmann A., and Chao T. I. (1998) Autocellular coupling by gap junctions in cultured astrocytes: a new view on cellular autoregulation during process formation. Glia 24, 121–140.

    PubMed  CAS  Google Scholar 

  124. Nagy J. I., Patel D., Ochalski P. A., and Stelmack G. L. (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88, 447–468.

    PubMed  CAS  Google Scholar 

  125. Dermietzel R., Hertzberg E. L., Kessler J. A., and Spray D. C. (1991) Gap junctions between cultured astrocytes: immunocytochemical, molecular, and electrophysiological analysis. J. Neurosci. 11, 1421–1432.

    PubMed  CAS  Google Scholar 

  126. Kunzelmann P., Schroder W., Traub O., Steinhauser C., Dermietzel R., and Willecke K. (1999) Late onset and increasing expression of the gap junctions protein connexin30 in adult murine brain and long-term cultured astrocytes. Glia 25, 111–119.

    PubMed  CAS  Google Scholar 

  127. Scemes E., Dermietzel R., and Spray D. C. (1998) Calcium waves between astrocytes from Cx43 knockout mice. Glia 24, 65–73.

    PubMed  CAS  Google Scholar 

  128. Goldberg G. S., Bechberger J. F., and Naus C. G. (1995) A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer. BioTechniques 18, 490–497.

    PubMed  CAS  Google Scholar 

  129. Rozental R., Morales M., Mehler M. F., Urban M., Kremer M., Dermietzel R., Kessler J. A., and Spray D. C. (1998) Changes in the properties of gap junctions during neuronal differentiation of hippocampal progenitor cells. J. Neurosci. 18, 1753–1762.

    PubMed  CAS  Google Scholar 

  130. El-Fouly M. H., Trosko J. E., and Chang C. C. (1987) Scrape-loading and dye transfer. A rapid and simple technique to study gap junctional intercellular communication. Exp. Cell Res. 168, 422–430.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Rozental, R., Srinivas, M., Spray, D.C. (2001). How to Close a Gap Junction Channel. In: Bruzzone, R., Giaume, C. (eds) Connexin Methods and Protocols. Methods In Molecular Biology™, vol 154. Humana Press. https://doi.org/10.1385/1-59259-043-8:447

Download citation

  • DOI: https://doi.org/10.1385/1-59259-043-8:447

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-658-1

  • Online ISBN: 978-1-59259-043-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics