Skip to main content

Radioactive In Situ Hybridization to Replication-Banded Chromosomes

  • Protocol
In Situ Hybridization Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 33))

Abstract

The technique of radioactive in situ hybridization of chromosomes is increasingly being replaced by nonisotopic methods. Amongst the principal reasons for this are greater convenience, resolution, safety, and speed offered by the nonradioactive methods; and the computerization of digital imaging microscopy, which has allowed previously unachievable maneuvers such as complex multicolor chromosome painting. Such a swing in preference is attested by the disproportionate application and publication of new sophisticated protocols based on the nonisotopic methods in recent times. However, the “fossilizing” radioactive procedure still holds a significant place in various chromosomal studies because of some of its unique features. For example, it offers an acceptable way of quantitating signal (and thus DNA sequence) distribution on different chromosomal sites (17) In laboratories where the more elaborate digital imaging equipment is not available, extended autoradiography offerred by radioactive in situ hybridization provides the sensitivity otherwise unattainable with nonradioactive approaches, especially when small probes or heterologous probes are used (see Chapter 15). Also, the hybridization slides and results obtained will form a permanent record that can be conveniently assessed or reassessed without any further treatment over a period of weeks, months, or even years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Choo, K. H. Vissel B, Brown R, Filby R. G., and Earle E. (1988) Homologous alpha satellite sequences on human acrocentnc chromosomes with selectivity for chromosomes 13,14 and 21. Implications for recombination between nonhomologues and Robertsonian translocations Nucleic Acids Res 16, 1273–1284

    Article  PubMed  CAS  Google Scholar 

  2. Choo, K H, Vissel, B., and Earle, E. (1989) Evolution of alpha satellite DNA on human acrocentnc chromosomes Genomics 5, 332–344.

    Article  PubMed  CAS  Google Scholar 

  3. Choo, K H, Brown, R., Webb, G, Craig, I, and Filby, R G (1987) Genomic organisation of human centromeric alpha satellite DNA: Characterization of a chromosome 17 alpha satellite sequence DNA. J. Molec Biol. 6, 297–305

    Article  CAS  Google Scholar 

  4. Choo, K H, Earle, E., and McQuillan, C. (1990) A homologous subfamily of satellite III DNA on human chromosomes 14 and 22. Nucleic Acids. Res 18, 5641–5648

    Article  PubMed  CAS  Google Scholar 

  5. Choo, K. H A, Earle, E, Vissel, B, and Kalitsis, P (1992) A chromosome 14-specific human satellite III DNA subfamily that shows variable presence on different chromosomes 14 Am y. Hum. Genet 50, 706–716.

    CAS  Google Scholar 

  6. Earle, E, Shaffer, L. G, Kalitsis, P, McQuillan, C, Dale, S, and Choo K H A (1992) Identification of DNA sequences flanking the breakpoint of human t(14q21q) Robertsonian translocations Am J Hum. Genet 50, 717–724.

    PubMed  CAS  Google Scholar 

  7. Kalitsis, P., Earle, E, Vissel, B., Shaffer, L G, McQuillan, C, and Choo K. H A. (1993) A chromosome 13 specific human satellite I DNA subfamily with minor presence on chromosome 21 Further studies on Robertsonian translocations Genomics 17, 104–112.

    Article  Google Scholar 

  8. Buckle, V.J and Craig, I. W (1986). In situ hybridization, in Human Genetic Diseases-A Practical Approach (Davies, K., ed.), IRL, Oxford, UK, pp. 85–100

    Google Scholar 

  9. Choo, K. H. A., Brown, R., and Earle, E. (1991) In situ hybridization of chromosomes, in Methods in Molecular Biology, vol 9: Protocols in Human Molecular Genetics (Mathew, C, ed.), Humana, Clifton, NJ, pp. 233–254

    Chapter  Google Scholar 

  10. Zabel, B. U, Naylor, S L., Sakaguchi, A Y, Bell, G I, and Shows, T B. (1983) High resolution chromosomal localization of human genes for amylase, proopiomelanocortin, somatostatin, and a DNA fragment (D351) by in situ hybridization. Proc. Natl Acad. Sei USA 80, 6932–6936

    Article  CAS  Google Scholar 

  11. Brown, R. M., Dahl, H-H M, and Brown, G K. (1989) X-chromosome localisation of the functional gene for the El alpha subunit of the human pyruvate dehydrogenase com-plex. Genomics 4, 174–181.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, G K., Brown, R M, Scholem, R D, Kirby, D. M., and Dahl, H.-H M (1989) The clinical and biochemical spectrum of human pyruvate dehydrogenase deficiency. Ann NY Acad. Sei 573, 360–368.

    Article  CAS  Google Scholar 

  13. Webb, G. C, Lee, J. F, Campbell, H. D, and Young, I G (1989) Haemopoietic growth factor gene IL3 and IL4 mapped to the same locus on mouse chromosome 11. Cytogenet Cell Genet. 50, 107–110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc.

About this protocol

Cite this protocol

Earle, E., Choo, K.H.A. (1994). Radioactive In Situ Hybridization to Replication-Banded Chromosomes. In: Choo, K.H.A. (eds) In Situ Hybridization Protocols. Methods in Molecular Biology™, vol 33. Humana Press. https://doi.org/10.1385/0-89603-280-9:147

Download citation

  • DOI: https://doi.org/10.1385/0-89603-280-9:147

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-280-4

  • Online ISBN: 978-1-59259-520-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics