
 1 

Text S1. Assessment of model assumptions and limitations  1 

Our results support the hypothesis that inapparent infections contribute substantially to 2 

DENV transmission. There are a number of uncertainties, however, that underscore the 3 

need for future research on the human immune response to DENV infection and 4 

correlates of disease severity. Below, we review the main limitations and data gaps 5 

identified by our analysis. 6 

• Other predictors of infectiousness than plasma viral load. Viremia is typically 7 

estimated with the concentration of viral genome copies in plasma. Other factors have 8 

been found to influence the probability of transmission to mosquitoes, such as 9 

serological response and the day of illness [1]. Similarly, measures of infectious virus 10 

across viremia profiles are needed to more fully understand how viremia dynamics 11 

relate to a person’s infectiousness to mosquitoes. 12 

• Limited immunological complexity of the within-host model. In the absence of 13 

data on target cell populations or effector immune responses, the ability to fit models 14 

with greater complexity and, thereby, to enhance understanding of the human 15 

immune response is limited [2,3]. Such studies could help reveal correlates of 16 

differences in viremia between primary and secondary infections and gain 17 

understanding on the mechanism(s) underlying enhanced infection efficiency in 18 

people with asymptomatic and pre-symptomatic infections.  19 

• Infectiousness prior to onset of symptoms. The within-host models that we used to 20 

estimate viremia in people with symptomatic infections were fitted to post-21 

symptomatic viremia data only. Although realizations of pre-symptomatic viremia 22 

were robust to the structural and parameter uncertainty that we explored [4], the 23 
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absence of pre-symptomatic data could lead to underestimation of early viremia 24 

levels and, as a consequence, underestimation of pre-symptomatic infectiousness. In 25 

addition, some parameters that drive early viremia trajectories were pre-assigned due 26 

to identifiability restrictions, resulting in underestimation of variation in pre-27 

symptomatic viremia. Obtaining early viremia titer data, either through clustered 28 

sampling around index cases (i.e., geographic or contact clusters) or possibly through 29 

human challenge studies, depending on the virus strains used, would improve our 30 

understanding of early DENV pathogenesis.   31 

• Viremia trajectories and infectiousness in inapparent symptomatic (IS) 32 

infections. The within-host model was fitted to data of apparent DENV infections 33 

(AS). While severe or hospitalized dengue cases have been associated with higher 34 

viremia levels than mild AS infections [1,5,6], it is unclear whether this extrapolates 35 

to IS infections. Similarly, significant differences between infection efficiency were 36 

found between severe and mild AS infections [1] as well as between As and S 37 

infections [7], but where IS infections fall on this spectrum remains to be elucidated. 38 

Antibodies are believed to play a role in viral clearance and may harbor information 39 

on viral trajectories across clinical outcomes [3]. While no significant differences in 40 

qualitative and quantitative antibody responses were found in children recovered from 41 

a primary IS or AS infection, the breadth in both pre-existing and post-infection 42 

antibodies differed significantly between secondary IS and AS infections [8]. Given 43 

these uncertainties, we explored the two extreme scenarios: assuming IS infections to 44 

be similar to either AS or As infections. The former was treated as the default 45 

scenario to ensure consistency with the clinical subgroups used in Duong et al.[7]. 46 
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The difference between the two scenarios in terms of estimated median contribution 47 

of silent infections was 4%. 48 

• Viremia trajectories in asymptomatic (As) infections. An empirically supported 49 

reduction factor was applied [7] to distinguish between viremia in As and 50 

symptomatic (S) infections. However, this factor may be confounded by the timing of 51 

the plasma titer measurements [7]. As infections are difficult to identify and the 52 

timing of infection is harder to infer than in symptomatic cases. Human challenge 53 

studies could aid in clarifying the relationship between viremia progression in relation 54 

to clinical outcome [9].  55 

• Post-secondary infections. Little is known about the susceptibility to infection, 56 

viremia trajectories, and infectiousness of post-secondary infections, in part because 57 

determining a person’s pre-exposure history after they have been infected with two 58 

different DENV serotypes is not reliable [10]. Given the low proportion of AS 59 

infections resulting from post-secondary infections (Fig S2), this may well be 60 

accompanied with lower viral loads and lower net infectiousness [11,12]. As such, the 61 

contribution of inapparent post-secondary infections may be lower than primary and 62 

secondary infections. Under the assumption that post-secondary infectiousness is 63 

equivalent to that of secondary infections (Fig S1), we estimated that the contribution 64 

of As+IS infections could be up to 11% (95% CI 10-13%) higher when accounting 65 

for these infections. This should be regarded as an upper bound, because the 66 

proportion of As infections among post-secondary infections may well be higher than 67 

among primary and secondary infections.  68 
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• Uncertainty and individual heterogeneity. The steep relationship between viral 69 

load and transmission probability [7] in asymptomatic infections is subject to large 70 

uncertainty. This results in a broad bimodal pattern in net infectiousness in which a 71 

large proportion of asymptomatic infections displays very little infectiousness 72 

whereas some are much more infectious than symptomatic individuals. It is not clear 73 

how much of this results from parameter uncertainty and how much is a reflection of 74 

individual heterogeneity. The fact that the steepness of this relationship is not 75 

conserved to the same extent in the data from indirect feeding assays [7] is suggestive 76 

of, but not conclusive about, a larger role of uncertainty than individual 77 

heterogeneity. Larger sample sizes are required to resolve this issue.   78 

• Definitions and study designs differ across As:IS:AS rates. The proportion of 79 

apparent infections detected may vary according to the study design used [13], with 80 

very active surveillance, as is typical in vaccine trials, resulting in somewhat higher 81 

estimates of the proportion of apparent infections [14]. Individuals detected as 82 

asymptomatic may become symptomatic later on, something not all study designs 83 

account for. This can result in overestimates of As infections at the expense of S 84 

infections. A universal, continuous metric for clinical dengue severity could aid in 85 

revealing correlates of dengue disease severity that currently go unnoticed in 86 

categorical analyses. 87 

• Additional factors influencing viremia, infectiousness, and clinical outcomes. 88 

While the estimated viral titers used in this analysis were fitted to only DENV-1, 89 

these titers may well vary across serotypes [1,2,15], and may be affected by the time 90 

since previous infection and the serotype a person was pre-exposed to. Similarly, 91 
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infectiousness is found to vary across virus serotypes [1], genotypes [16], and vector-92 

virus genotype interactions [17]. Rates of clinical disease and detection can vary 93 

across regions due to factors such as DENV serotype [18], genotype [9,19], the 94 

clinical outcome of a previous DENV infection [13,19] and time since a previous 95 

outbreak [8], altering the relative contributions of infection classes.  96 

• Relation between symptoms and detection. In our analysis, detection rates relied on 97 

the assumption that the severity of symptoms is proportional to the proportion of 98 

DENV infections detected by disease surveillance systems; i.e., IS are assumed not to 99 

be detected. However, health-seeking behavior depends on many factors, not all of 100 

which are related to the severity of symptoms. These include socio-economic factors, 101 

access to health care, and the perception of the quality of available care, among others 102 

[20]. In addition, there can be a delay between symptom onset and health seeking and 103 

detection. Therefore, the contribution of individuals prior to detection is almost 104 

certainly a conservative underestimate. 105 

• Extrinsic incubation period (EIP) may vary as a result of viral load [21-23]. The 106 

relatively lower viremia of asymptomatic and secondary infections could increase the 107 

length of the incubation period in the mosquito and consequently the net contributions 108 

of those infection classes. At a given viremia level, however, people with 109 

asymptomatic infections contributed to a higher mosquito viral load than those with 110 

symptomatic infections [7]. The impact of lower asymptomatic viremia on the EIP, 111 

therefore, may be smaller than expected based solely on viremia. Future 112 

xenodiagnostic assessments of infectiousness to mosquitoes would be enhanced by 113 

quantifying mosquito infection to test this hypothesis across infection classes.  114 
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• Individuals that develop severe dengue may have a different infectiousness 115 

profile. Viremia estimates from Clapham et al. [4] are consistent with a higher peak 116 

viral load and increased cell entry in individuals that develop severe dengue 117 

compared to mild dengue cases. It is unclear how infectiousness differs for severe 118 

cases, because temporal confounding due to differential health seeking behavior has 119 

hampered direct comparison between severe and mild infections [1]. The impact of 120 

including severe cases in the analysis is minor due to their small numerical 121 

prominence, but their inclusion does increase the contribution of post-symptomatic 122 

DAS infections from 1.0% (95% CI: 0.8-1.1%) to 2.1% (95% CI: 0.8-3.6). Severe 123 

dengue cases will likely present with impaired mobility and hospitalization, which 124 

could also affect their contact rates [24]. However, severe symptoms typically occur 125 

after the infectious period has ended, so differences in contact rates between severe 126 

and mild dengue cases could end up having a modest impact on their relative 127 

contributions to transmission. 128 
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