
Text S2. Mathematical Supplement on the Lotka-Volterra

model with mutation

In this supplement we give an explicit form of the solution and a proof of the existence of
a stable positive equilibria for the Lotka-Volterra model with mutation for the particular
interaction βi,j =

rj

ri

dVi(t)

dt
= riVi

[

1−
1

K

(

Vi +

4
∑

j=1,j 6=i

βi,jVj

)]

+

4
∑

j=1

µij(Vj − Vi). (1)

We also compute the equilibria for a simplified matrix of mutation rates. As a preliminary
we investigate the behaviour of the total population N(t) =

∑4
i=1 Vi.

Behaviour of the total population

Let us first derive the equation satisfied by N(t). To this end, let us introduce the quantities
α(t) :=

∑4
i=1 riVi, rmin := min{r1, r2, r3, r4} and rmax := max{r1, r2, r3, r4}. Then by

summing all the equations satisfied by Vi and rearranging the terms we obtain the equation

dN

dt
= α(t)

(

1−
N

K

)

. (2)

Therefore one can see that the total population N follows a form of logistic equation. Now
let us introduce the functions Nmin and Nmax which are respectively the solution of the
logistic equations

dNmin

dt
= rminNmin

(

1−
Nmin

K

)

, (3)

Nmin(0) = N(0), (4)

dNmax

dt
= rmaxNmax

(

1−
Nmax

K

)

, (5)

Nmax(0) = N(0). (6)

Since rminN(t) ≤ α(t) ≤ rmaxN(t), one can check that for all times

min{Nmin(t), Nmax(t)} ≤ N(t) ≤ max{Nmin(t), Nmax(t)}.

Hence, N(t) converge to the carrying capacity K exponentially fast (i.e |K−N | ∼ e−trmin).
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Existence of a unique equilibria

Let us first rewrite the system of equation in a more convenient way. Let us define the
quantities

α(t) =
4
∑

i=1

riVi and µi =
4
∑

j=1

µij

and the following matrix:

A(α(t)) :=







(r1 −
α(t)
K

)− µ1 + µ11 µij

. . .

µij (r4 −
α(t)
K

)− µ4 + µ44






.

With this notation the system of equation (1) rewrites

dV

dt
= A(α(t))V (7)

and a stationary equilibria V̄ for the system (7) will satisfy the following equations:

A(α)V̄ = 0, (8)

α =
4
∑

i

riV̄i. (9)

By introducing the two matrices

M :=







−µ1 + µ11 µij

. . .

µij −µ4 + µ44






and R :=







r1 0
. . .

0 r4






,

the matrix A(α) rewrites A(α) =
(

R −
(

α
K

)

Id+M
)

and one can see that a stationary
equilibria V̄ must satisfy the equation :

(M +R)V̄ =
( α

K

)

V̄ . (10)

Lemma 0.1 If V̄ is a non negative stationary solution, then either V̄ ≡ 0 or V̄ > 0 (i.e
∀ i, V̄i > 0).

Proof:

First, observe that 0 is a solution of the problem (8). Now, let us assume there exists
a non negative stationary solution V̄ 6≡ 0. Then we must have V̄j > 0 for all j. Indeed,
assume that V̄i = 0 for some i, then from (10) we have

(M +RV̄ )i =
( α

K

)

V̄i = 0.
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Therefore we get the contradiction

0 = riV̄i +
4
∑

j=1

µij(V̄j − V̄i) =
4
∑

j=1

µijV̄j > 0.

Hence V̄j > 0 for all j.
�

Observe that from the above Lemma and from (10), a non trivial equilibria V̄ is always
a positive eigenvector of the matrix M +R associated with the eigenvalue α

K
. We are now

in position to prove the existence of a unique positive stationary solution to (10).

Lemma 0.2 There exists a unique α and V̄ solution to (8) and (9). Moreover, V̄ satisfies
∑4

i=1 V̄i = K.

Proof:

Let µ̄ = supi∈{1,...,4} µi. Since R + M + µ̄Id is a non negative matrix, by the Perron-
Frobenius Theorem there exists a unique principal eigenvalue (νp, vp) with a positive eigen-
vector vp, i.e. (νp, vp) satisfies

(R +M + µ̄Id)vp = νpvp. (11)

Moreover, the eigenspace associated to the eigenvalue νp is one dimensional, see [1]. Let us
choose vp > 0 so that

∑4
i=1(vp)

2
i = 1. From the equation (11), we deduce that the vector vp

is a positive eigenvector of the matrix M+R associated with the eigenvalue λp := (νp− µ̄).
By construction one can see that λp is the unique eigenvalue of the matrix M+R associated
with a positive eigenvector. A quick computation shows that λp = (νp − µ̄) > 0. Indeed,
if not we have

(R +M)vp ≤ 0.

Thus for all i ∈ {1, . . . , 4} we have

ri(vp)i +
4
∑

j=1

µij

(

(vp)j − (vp)i
)

≤ 0.

Let (vp)i0 := mini∈{1,...,4}(vp)i then for (vp)i0 we have

4
∑

j=1

µij

(

(vp)j − (vp)i0
)

≥ 0

and since R is a positive matrix we achieve the contradiction

0 < ri0(vp)i0 +

4
∑

j=1

µij

(

(vp)j − (vp)i0
)

≤ 0.
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Now from (10) we deduce that there exists a unique α so that α
K

= λp, which is α = Kλp.
Now let us construct our solution. Note that for any λ ∈ R, the vector λvp is also a solution
to (10) with the eigenvalue λp. So to obtain a solution V̄ to (8) and (9) we only have to
adjust λ in such a way that

∑

i λri(vp)i = α, which corresponds to take

λ =
Kλp

∑4
i ri(vp)i

.

Note that the solution (Kλp,
Kλp∑
4

i ri(vp)i
vp) satisfies

Kλp
∑4

i ri(vp)i

4
∑

i=1

(vp)i = K.

Indeed, since vp is an eigenvector associated with λp we have

(R +M)vp = λpvp.

So we will have
4
∑

i=1

ri(vp)i =

4
∑

i=1

((R +M)vp)i = λp

4
∑

i=1

(vp)i.

Since we know that λp > 0, we deduce that

∑4
i=1(vp)i

∑4
i ri(vp)i

=
1

λp

.

Hence,

Kλp
∑4

i ri(vp)i

4
∑

i=1

(vp)i = K.

Explicit form of the solution V (t)

Here let us derive an explicit formula for the solution V (t) of (1). To this end let us
introduce the function

vi(t) := e
∫ t

0
α(s) dsVi(t)

and remark that the vi satisfy the linear equation

dvi(t)

dt
= rivi +

4
∑

j=1

µij(vj − vi).

Thus vi(t) :=
(

e(R+M)tV (0)
)

i
since vi(0) = Vi(0) and Vi(t) is implicitly given by the formula

Vi(t) = e−
∫ t

0
α(s) ds

(

e(R+M)tV (0)
)

i
.
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Now let us evaluate the term e−
∫ t

0
α(s) ds. By differentiating e−

∫ t

0
α(s) ds we have

d

dt
(e

∫ t

0
α(s) ds) = α(t)e

∫ t

0
α(s) ds =

4
∑

j=1

rjVje
∫ t

0
α(s) ds =

4
∑

j=1

rjvj(t).

Therefore one has

e
∫ t

0
α(s) ds = 1 +

∫ t

0

4
∑

j=1

rjvj(s) ds,

which rewrites

e
∫ t

0
α(s) ds = 1 +

4
∑

j=1

rj

∫ t

0

vj(s) ds = 1 +

N
∑

j=1

rj

∫ t

0

(e(R+M)sV (0))j ds.

Hence we have

Vi(t) =

(

e(R+M)tV (0)
)

i

1 +
∑4

j=1 rj
∫ t

0
(e(R+M)sV (0))j ds

.

An illuminating example

Let us look deeper on the structure of the steady state. For a general setting it will be
very hard to get an analytic formula expressing each density, however one can extract some
information for a particular structure of the mutation matrix M . Let us consider M the
following matrix of mutation :

M :=









(1− µ)2 − 1 µ(1− µ) µ(1− µ) µ2

µ(1− µ) (1− µ)2 − 1 µ2 µ(1− µ)
µ(1− µ) µ2 (1− µ)2 − 1 µ(1− µ)

µ2 µ(1− µ) µ(1− µ) (1− µ)2 − 1









,

where µ is a parameter giving the point mutation rate per replication cycle and per nu-
cleotide. This particular matrix M corresponds to a set of 4 virus variants differing only
by one or two substitutions used in this study. For simplicity, we assume that the fittest
variant of the system correspond to the first variant.

Now by defining the following two matrices Mred and C

Mred :=









−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2









, C :=









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









,

one can see that M = µMred + µ2C = µMred +O(µ2).
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So, as µ ∼ 10−5 << 1, after neglecting the quadratic terms in µ one have M ≈ µMred.
Let us now investigate the steady state solution of the problem (8)-(9) with µMred instead
of M . According to the above computation, the stationary solution is given by the formula

K(λp − 2µ)
∑4

i ri(vp)i
vp,

where λp and vp are respectively the principal eigenvalue and positive eigenvector of R +
µMred + 2µId.

An analytic expression of the steady state will then follow from the behaviour of λp

and vp with respect to small µ. To this end we first recall the following result:

Theorem 0.3 (Differentiability of the eigenvalues) Let λ1 be an algebraically simple
eigenvalue of a n × n symmetric matrix A and let C be a another n × n matrix.Then for
ǫ > 0 small enough the matrix A(ǫ) := A + ǫC has a unique eigenvalue λ1(ǫ) of the form

λ1(ǫ) = λ1 + ǫ
tv1Cv1

v1 • v1
+O(ǫ2),

where v1 satisfies Av1 = λ1v1 and u • v denotes the standard scalar product between two
vectors. Moreover the eigenvector v1(ǫ) satisfies

(i) v1(ǫ) • v1(ǫ) = 1,

(ii) v1(ǫ) = v1 + ǫ

n
∑

i=2

tviCv1

λ1 − λi

(

vi − v1(v1 • vi)
)

+O(ǫ2).

Applying the above theorem in our example it follows that the principal eigenvalue
λp(µ) of R + µMred and its corresponding principal eigenvector vp(µ) are given by

λp(µ) = λp(R) + µ
tv1Mredv1

v1 • v1
+O(µ2),

vp(µ) = vp + µ

4
∑

i 6=i0

tviMredvp

λp − λi

(

vi − vp(vp • vi)
)

+O(µ2),

where vp is the principal eigenvector associated to λp(R). Since R is diagonal, we have
λi = ri and vi = ei the corresponding unit vector.
Therefore λp(R) = rmax := max{r1, r2, r3, r4} = r1 and v1 = e1. So we have

λp(µ) = r1 − 2µ+O(µ2),

vp(µ) = e1 + µ

3
∑

i=2

1

r1 − ri
ei +O(µ2),

since te1Mrede4 = 0. Note that the above formulas are only valid for µ << mini 6=1{r1−ri}.
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Going back to the formula of the steady states and plugging the above asymptotic
formulas for λp(µ) and vp(µ) we end up with

V̄ =
K(r1 − 2µ)

r1 + µ
∑3

i=2
ri

r1−ri

(

e1 + µ

3
∑

i=2

1

r1 − ri
ei

)

+O(µ2).

Now for µ << 1∑
3

i=2

ri
r1−ri

using a Taylor expansion one has

1

r1 + µ
∑3

i=2
ri

r1−ri

=
1

r1

(

1−
µ
∑3

i=2
ri

r1−ri

r1
+O(µ2)

)

and we can see that

V̄ = K

[

1−
µ

r1

(

2 +
3
∑

i=2

ri

r1 − ri

)]

e1 +Kµ

3
∑

i=2

1

r1 − ri
ei +O(µ2),

which rewrites

V̄ =









K

0
0
0









+ µK











− 1
r1

(

2 + r2
r1−r2

+ r3
r1−r3

)

1
r1−r2

1
r1−r3

0











+O(µ2).

As a first consequence of this formulas, on can see that the variants which are not
produced by mutations by the fittest variant are only appearing in small quantities of
order O(µ2).
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