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We prove the convergence of EigenRank algorithm, and analyse the speed of convergence.
Meanwhile, we investigate the time complexity of the EigenRank algorithm.

1 Proof of convergence

As a consequence of Eq. (9) in the main text,
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Denote by R̃ = D
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4 , c = c1c2, then (1) can be rewritten

R̃ = cB̃B̃TR̃. (2)

List the eigenvalues of B̃B̃T in descending order as

λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0,

where multiplicity is accounted. Choose an orthogonal matrix G such that

GTB̃B̃TG = Λ := diag{λ1, . . . , λk}.

We make the assumption that λ1 is the unique largest eigenvalue. Eq. (2) can be expressed as

x = cΛx, (3)

where x = GTR̃.
The iteration can be expressed as
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, n = 0, 1, . . . , (4)

where x(n) is the x after the n-th iteration step.
In the case x
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Consequently for i ̸= 1 we have
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where by the assumption η := λ2

λ1
< 1.

Denote by e1 = (1, 0, . . . , 0)T . When n → ∞, since
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decays to 0 for i ̸= 1 and
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completing the proof of convergence.

2 Speed of convergence

Since x(n) = GTR̃
(n)

= GTD
1
4R(n) and ||R(n)||2 ≡ 1, it holds for all n ≥ 1 that ||x(n)||2 ≤
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It follows from these inequalities and Eq. (7) that
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As a consequence
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Therefore, in order to guarantee
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such that the iteration stops, it is enough to let n > logη
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3 Time complexity

In each step of iteration, there are 4 matrix multiplication of total 2|U ||O| + |U | + |O|
times of number multiplication, one summation of |U | squares, one square root and |U | divisions.
Therefore each step is of time complexity O(|U ||O|). Since the iteration stops in no more than

[logη
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]+3 steps, the time complexity of the iteration process in the EigenRank

algorithm is not beyond O(|U ||O| logη δ).
In the normalization process of the rating matrix, to find the extreme ratings r1i and r2i for

all the users i, 2|E| times of comparisons are needed. Then the normalization via formula (??)
contains |E| times of division. Therefore the time complexity of the normalization process is
O(|E|).

Sum up, the total complexity of the EigenRank algorithm is O(|U ||O| logη δ).
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